BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20615042)

  • 1. Monitoring changes of cellular metabolism and microviscosity in vitro based on time-resolved endogenous fluorescence and its anisotropy decay dynamics.
    Zheng W; Li D; Qu JY
    J Biomed Opt; 2010; 15(3):037013. PubMed ID: 20615042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence.
    Li D; Zheng W; Qu JY
    Opt Lett; 2008 Oct; 33(20):2365-7. PubMed ID: 18923624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.
    Yu Q; Heikal AA
    J Photochem Photobiol B; 2009 Apr; 95(1):46-57. PubMed ID: 19179090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the metabolic index using the fluorescence lifetime of free and bound nicotinamide adenine dinucleotide using the phasor approach.
    Ranjit S; Malacrida L; Stakic M; Gratton E
    J Biophotonics; 2019 Nov; 12(11):e201900156. PubMed ID: 31194290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free high-throughput assays to screen and characterize novel lactate dehydrogenase inhibitors.
    Vanderporten E; Frick L; Turincio R; Thana P; Lamarr W; Liu Y
    Anal Biochem; 2013 Oct; 441(2):115-22. PubMed ID: 23871998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensing cell metabolism by time-resolved autofluorescence.
    Wu Y; Zheng W; Qu JY
    Opt Lett; 2006 Nov; 31(21):3122-4. PubMed ID: 17041655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular pH sensing using autofluorescence lifetime microscopy.
    Ogikubo S; Nakabayashi T; Adachi T; Islam MS; Yoshizawa T; Kinjo M; Ohta N
    J Phys Chem B; 2011 Sep; 115(34):10385-90. PubMed ID: 21776989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase.
    Piersma SR; Visser AJ; de Vries S; Duine JA
    Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative auto-fluorescence quenching of free and bound NADH in HeLa cell line model with Carbonyl cyanide-p-Trifluoromethoxy phenylhydrazone (FCCP) as quenching agent.
    Rehman AU; Qureshi SA
    Photodiagnosis Photodyn Ther; 2022 Sep; 39():102954. PubMed ID: 35690321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD(P)H binding configurations revealed by time-resolved fluorescence and two-photon absorption.
    Blacker TS; Duchen MR; Bain AJ
    Biophys J; 2023 Apr; 122(7):1240-1253. PubMed ID: 36793214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of halides on reduced nicotinamide adenine dinucleotide binding properties and catalytic activity of beef heart lactate dehydrogenase.
    Anderson SR
    Biochemistry; 1981 Feb; 20(3):464-7. PubMed ID: 7213591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ.
    Wakita M; Nishimura G; Tamura M
    J Biochem; 1995 Dec; 118(6):1151-60. PubMed ID: 8720129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of mitochondrial NADH fluorescence lifetimes: steady-state kinetics of matrix NADH interactions.
    Blinova K; Carroll S; Bose S; Smirnov AV; Harvey JJ; Knutson JR; Balaban RS
    Biochemistry; 2005 Feb; 44(7):2585-94. PubMed ID: 15709771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of ouabain on metabolic oxidative state in living cardiomyocytes evaluated by time-resolved spectroscopy of endogenous NAD(P)H fluorescence.
    Chorvatova A; Elzwiei F; Mateasik A; Chorvat D
    J Biomed Opt; 2012 Oct; 17(10):101505. PubMed ID: 23223981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time analysis of metabolic activity within Lactobacillus acidophilus by phasor fluorescence lifetime imaging microscopy of NADH.
    Torno K; Wright BK; Jones MR; Digman MA; Gratton E; Phillips M
    Curr Microbiol; 2013 Apr; 66(4):365-7. PubMed ID: 23233088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase.
    Srivastava DK; Bernhard SA
    Biochemistry; 1984 Sep; 23(20):4538-45. PubMed ID: 6388629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Associated anisotropy of intrinsic NAD(P)H for monitoring changes in the metabolic activities of breast cancer cells (4T1) in three-dimensional collagen matrix.
    Cong ATQ; Pimenta RML; Holy J; Heikal AA
    Phys Chem Chem Phys; 2021 Jun; 23(22):12692-12705. PubMed ID: 34036961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence lifetime imaging of free and protein-bound NADH.
    Lakowicz JR; Szmacinski H; Nowaczyk K; Johnson ML
    Proc Natl Acad Sci U S A; 1992 Feb; 89(4):1271-5. PubMed ID: 1741380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-Photon Excited Fluorescence Dynamics in Enzyme-Bound NADH: the Heterogeneity of Fluorescence Decay Times and Anisotropic Relaxation.
    Gorbunova IA; Sasin ME; Golyshev DP; Semenov AA; Smolin AG; Beltukov YM; Vasyutinskii OS
    J Phys Chem B; 2021 Sep; 125(34):9692-9707. PubMed ID: 34410128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.