BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20615045)

  • 1. Quantitative Raman spectroscopy in turbid media.
    Reble C; Gersonde I; Andree S; Eichler HJ; Helfmann J
    J Biomed Opt; 2010; 15(3):037016. PubMed ID: 20615045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental validation of a spectroscopic Monte Carlo light transport simulation technique and Raman scattering depth sensing analysis in biological tissue.
    Akbarzadeh A; Edjlali E; Sheehy G; Selb J; Agarwal R; Weber J; Leblond F
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33111509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust metamodel-based inverse estimation of bulk optical properties of turbid media from spatially resolved diffuse reflectance measurements.
    Watté R; Aernouts B; Van Beers R; Saeys W
    Opt Express; 2015 Oct; 23(21):27880-98. PubMed ID: 26480447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of the influence of internal optical absorption on the external Raman signal for biological samples.
    Krasnikov I; Suhr C; Seteikin A; Meinhardt-Wollweber M; Roth B
    J Opt Soc Am A Opt Image Sci Vis; 2019 May; 36(5):877-882. PubMed ID: 31045016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Raman spectroscopy for quantitative biological spectroscopy part I: theory and simulations.
    Shih WC; Bechtel KL; Feld MS
    Opt Express; 2008 Aug; 16(17):12726-36. PubMed ID: 18711511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two efficient approaches for modeling of Raman scattering in homogeneous turbid media.
    Krasnikov I; Suhr C; Seteikin A; Roth B; Meinhardt-Wollweber M
    J Opt Soc Am A Opt Image Sci Vis; 2016 Mar; 33(3):426-33. PubMed ID: 26974912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations.
    Xie H; Liu H; Svenmarker P; Axelsson J; Xu CT; Gräfe S; Lundeman JH; Cheng HP; Svanberg S; Bendsoe N; Andersen PE; Svanberg K; Andersson-Engels S
    J Biomed Opt; 2011 Jun; 16(6):066002. PubMed ID: 21721803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials.
    Matousek P; Conti C; Realini M; Colombo C
    Analyst; 2016 Feb; 141(3):731-9. PubMed ID: 26646435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of in vivo Raman spectral measurements of human skin with a multi-layered tissue optical model.
    Wang S; Zhao J; Lui H; He Q; Bai J; Zeng H
    J Biophotonics; 2014 Sep; 7(9):703-12. PubMed ID: 24307289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms.
    Palmer GM; Ramanujam N
    Appl Opt; 2006 Feb; 45(5):1062-71. PubMed ID: 16512550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue.
    Hallacoglu B; Sassaroli A; Fantini S
    PLoS One; 2013; 8(5):e64095. PubMed ID: 23724023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Lambertian surface scattering on the spatially resolved reflectance from turbid media: a computational study.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Apr; 61(10):2775-2787. PubMed ID: 35471353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of multiple artificial neural networks for the determination of the optical properties of turbid media.
    Jäger M; Foschum F; Kienle A
    J Biomed Opt; 2013 May; 18(5):57005. PubMed ID: 23680997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of signal on depth in transmission Raman spectroscopy.
    Matousek P; Everall N; Littlejohn D; Nordon A; Bloomfield M
    Appl Spectrosc; 2011 Jul; 65(7):724-33. PubMed ID: 21740632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental and numerical modelling investigation of the optical properties of Intralipid using deep Raman spectroscopy.
    Moran LJ; Wordingham F; Gardner B; Stone N; Harries TJ
    Analyst; 2021 Dec; 146(24):7601-7610. PubMed ID: 34783335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media.
    Wang L; Jacques SL
    J Opt Soc Am A Opt Image Sci Vis; 1993 Aug; 10(8):1746-52. PubMed ID: 8350159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computationally efficient Monte-Carlo model for biomedical Raman spectroscopy.
    Dumont AP; Fang Q; Patil CA
    J Biophotonics; 2021 Jul; 14(7):e202000377. PubMed ID: 33733621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatially resolved reflectance from turbid media having a rough surface. Part II: experiments.
    Lindner B; Foschum F; Kienle A
    Appl Opt; 2022 Sep; 61(27):8123-8132. PubMed ID: 36255935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Turbidity-corrected Raman spectroscopy for blood analyte detection.
    Barman I; Singh GP; Dasari RR; Feld MS
    Anal Chem; 2009 Jun; 81(11):4233-40. PubMed ID: 19413337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.