These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 20615291)

  • 1. New method for Raman investigation of the orientation of collagen fibrils and crystallites in the Haversian system of bone.
    Falgayrac G; Facq S; Leroy G; Cortet B; Penel G
    Appl Spectrosc; 2010 Jul; 64(7):775-80. PubMed ID: 20615291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone osteonal tissues by Raman spectral mapping: orientation-composition.
    Kazanci M; Roschger P; Paschalis EP; Klaushofer K; Fratzl P
    J Struct Biol; 2006 Dec; 156(3):489-96. PubMed ID: 16931054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman imaging of two orthogonal planes within cortical bone.
    Kazanci M; Wagner HD; Manjubala NI; Gupta HS; Paschalis E; Roschger P; Fratzl P
    Bone; 2007 Sep; 41(3):456-61. PubMed ID: 17602910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.
    Schrof S; Varga P; Galvis L; Raum K; Masic A
    J Struct Biol; 2014 Sep; 187(3):266-275. PubMed ID: 25025981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy.
    Penel G; Delfosse C; Descamps M; Leroy G
    Bone; 2005 May; 36(5):893-901. PubMed ID: 15814305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transitional structures in lamellar bone.
    Ziv V; Sabanay I; Arad T; Traub W; Weiner S
    Microsc Res Tech; 1996 Feb; 33(2):203-13. PubMed ID: 8845519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Observations of multiscale, stress-induced changes of collagen orientation in tendon by polarized Raman spectroscopy.
    Masic A; Bertinetti L; Schuetz R; Galvis L; Timofeeva N; Dunlop JW; Seto J; Hartmann MA; Fratzl P
    Biomacromolecules; 2011 Nov; 12(11):3989-96. PubMed ID: 21954830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation of collagen at the osteocyte lacunae in human secondary osteons.
    Ascenzi MG; Gill J; Lomovtsev A
    J Biomech; 2008 Dec; 41(16):3426-35. PubMed ID: 19013574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered interstitial water observed in bone by nuclear magnetic resonance.
    Wilson EE; Awonusi A; Morris MD; Kohn DH; Tecklenburg MM; Beck LW
    J Bone Miner Res; 2005 Apr; 20(4):625-34. PubMed ID: 15765182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy.
    Gamsjaeger S; Masic A; Roschger P; Kazanci M; Dunlop JW; Klaushofer K; Paschalis EP; Fratzl P
    Bone; 2010 Aug; 47(2):392-9. PubMed ID: 20450992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study of bone tissue structure using polarized Raman spectra].
    Gevorkian BZ; Arnotskaia NE; Fedorova EN
    Biofizika; 1984; 29(6):1046-52. PubMed ID: 6518170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different fibrillar architectures coexisting in Haversian bone.
    Raspanti M; Guizzardi S; Strocchi R; Ruggeri A
    Ital J Anat Embryol; 1995; 100 Suppl 1():103-12. PubMed ID: 11322282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements.
    Takano Y; Turner CH; Burr DB
    J Bone Miner Res; 1996 Sep; 11(9):1292-301. PubMed ID: 8864904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of composition and anisotropic elastic properties of secondary osteon lamellae.
    Hofmann T; Heyroth F; Meinhard H; Fränzel W; Raum K
    J Biomech; 2006; 39(12):2282-94. PubMed ID: 16144702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the increasing fragility of human teeth with age: a deep-UV resonance Raman study.
    Ager JW; Nalla RK; Balooch G; Kim G; Pugach M; Habelitz S; Marshall GW; Kinney JH; Ritchie RO
    J Bone Miner Res; 2006 Dec; 21(12):1879-87. PubMed ID: 17002558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying chemical changes in subchondral bone taken from murine knee joints using Raman spectroscopy.
    Dehring KA; Crane NJ; Smukler AR; McHugh JB; Roessler BJ; Morris MD
    Appl Spectrosc; 2006 Oct; 60(10):1134-41. PubMed ID: 17059665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography.
    Varga P; Pacureanu A; Langer M; Suhonen H; Hesse B; Grimal Q; Cloetens P; Raum K; Peyrin F
    Acta Biomater; 2013 Sep; 9(9):8118-27. PubMed ID: 23707503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SEM and TEM study of the hierarchical structure of C57BL/6J and C3H/HeJ mice trabecular bone.
    Rubin MA; Rubin J; Jasiuk I
    Bone; 2004 Jul; 35(1):11-20. PubMed ID: 15207736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropic Raman scattering in collagen bundles.
    Janko M; Davydovskaya P; Bauer M; Zink A; Stark RW
    Opt Lett; 2010 Aug; 35(16):2765-7. PubMed ID: 20717450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone mineral properties and 3D orientation of human lamellar bone around cement lines and the Haversian system.
    Grünewald TA; Johannes A; Wittig NK; Palle J; Rack A; Burghammer M; Birkedal H
    IUCrJ; 2023 Mar; 10(Pt 2):189-198. PubMed ID: 36786504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.