BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 20615474)

  • 1. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods.
    Wharton S; Bowtell R
    Neuroimage; 2010 Nov; 53(2):515-25. PubMed ID: 20615474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility phase imaging with comparison to R2 mapping of iron-rich deep grey matter.
    Walsh AJ; Wilman AH
    Neuroimage; 2011 Jul; 57(2):452-61. PubMed ID: 21513807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using magnetic field simulation to study susceptibility-related phase contrast in gradient echo MRI.
    Schäfer A; Wharton S; Gowland P; Bowtell R
    Neuroimage; 2009 Oct; 48(1):126-37. PubMed ID: 19520176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength.
    Deistung A; Schäfer A; Schweser F; Biedermann U; Turner R; Reichenbach JR
    Neuroimage; 2013 Jan; 65():299-314. PubMed ID: 23036448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism?
    Schweser F; Deistung A; Lehr BW; Reichenbach JR
    Neuroimage; 2011 Feb; 54(4):2789-807. PubMed ID: 21040794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FAIR-TrueFISP imaging of cerebral perfusion in areas of high magnetic susceptibility differences at 1.5 and 3 Tesla.
    Boss A; Martirosian P; Klose U; Nägele T; Claussen CD; Schick F
    J Magn Reson Imaging; 2007 May; 25(5):924-31. PubMed ID: 17410577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voxel-based analysis of R2* maps in the healthy human brain.
    Péran P; Hagberg G; Luccichenti G; Cherubini A; Brainovich V; Celsis P; Caltagirone C; Sabatini U
    J Magn Reson Imaging; 2007 Dec; 26(6):1413-20. PubMed ID: 18059009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Susceptibility weighted imaging with multiple echoes.
    Denk C; Rauscher A
    J Magn Reson Imaging; 2010 Jan; 31(1):185-91. PubMed ID: 20027586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus.
    Volz S; Hattingen E; Preibisch C; Gasser T; Deichmann R
    Neuroimage; 2009 May; 45(4):1135-43. PubMed ID: 19349229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping.
    Bilgic B; Pfefferbaum A; Rohlfing T; Sullivan EV; Adalsteinsson E
    Neuroimage; 2012 Feb; 59(3):2625-35. PubMed ID: 21925274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field perturbation of neural recording and stimulating microelectrodes.
    Martinez-Santiesteban FM; Swanson SD; Noll DC; Anderson DJ
    Phys Med Biol; 2007 Apr; 52(8):2073-88. PubMed ID: 17404456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Susceptibility-enhanced 3-Tesla T1-weighted spoiled gradient echo of the midbrain nuclei for guidance of deep brain stimulation implantation.
    Young GS; Feng F; Shen H; Chen NK
    Neurosurgery; 2009 Oct; 65(4):809-15. PubMed ID: 19834387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. STrategically Acquired Gradient Echo (STAGE) imaging, part I: Creating enhanced T1 contrast and standardized susceptibility weighted imaging and quantitative susceptibility mapping.
    Chen Y; Liu S; Wang Y; Kang Y; Haacke EM
    Magn Reson Imaging; 2018 Feb; 46():130-139. PubMed ID: 29056394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field.
    Marques JP; Kober T; Krueger G; van der Zwaag W; Van de Moortele PF; Gruetter R
    Neuroimage; 2010 Jan; 49(2):1271-81. PubMed ID: 19819338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging.
    Gilbert G; Savard G; Bard C; Beaudoin G
    Magn Reson Imaging; 2012 Jun; 30(5):722-30. PubMed ID: 22459441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse relaxation time (T2) mapping in the brain with off-resonance correction using phase-cycled steady-state free precession imaging.
    Deoni SC
    J Magn Reson Imaging; 2009 Aug; 30(2):411-7. PubMed ID: 19629970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo imaging of the human brain at 1.5 T with 0.6-mm isotropic resolution.
    Oros-Peusquens AM; Stoecker T; Amunts K; Zilles K; Shah NJ
    Magn Reson Imaging; 2010 Apr; 28(3):329-40. PubMed ID: 20117896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain.
    Haacke EM; Ayaz M; Khan A; Manova ES; Krishnamurthy B; Gollapalli L; Ciulla C; Kim I; Petersen F; Kirsch W
    J Magn Reson Imaging; 2007 Aug; 26(2):256-64. PubMed ID: 17654738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully-automated detection of cerebral water content changes: study of age- and gender-related H2O patterns with quantitative MRI.
    Neeb H; Zilles K; Shah NJ
    Neuroimage; 2006 Feb; 29(3):910-22. PubMed ID: 16303316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T.
    Thilmann O; Larsson EM; Björkman-Burtscher IM; Ståhlberg F; Wirestam R
    J Magn Reson Imaging; 2005 Nov; 22(5):597-604. PubMed ID: 16200539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.