These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20615523)

  • 1. Modeling the effect of immobilization of microorganisms on the rate of biodegradation of phenol under inhibitory conditions.
    Massalha N; Shaviv A; Sabbah I
    Water Res; 2010 Oct; 44(18):5252-9. PubMed ID: 20615523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha.
    Dursun AY; Tepe O
    J Hazard Mater; 2005 Nov; 126(1-3):105-11. PubMed ID: 16051433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.
    El-Naas MH; Al-Muhtaseb SA; Makhlouf S
    J Hazard Mater; 2009 May; 164(2-3):720-5. PubMed ID: 18829170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors.
    Ruan B; Wu P; Chen M; Lai X; Chen L; Yu L; Gong B; Kang C; Dang Z; Shi Z; Liu Z
    Ecotoxicol Environ Saf; 2018 Oct; 162():103-111. PubMed ID: 29990721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of tetrahydrofuran by Pseudomonas oleovorans DT4 immobilized in calcium alginate beads impregnated with activated carbon fiber: mass transfer effect and continuous treatment.
    Chen DZ; Fang JY; Shao Q; Ye JX; Ouyang DJ; Chen JM
    Bioresour Technol; 2013 Jul; 139():87-93. PubMed ID: 23644074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling phenol biodegradation by activated sludges evaluated through respirometric techniques.
    Contreras EM; Albertario ME; Bertola NC; Zaritzky NE
    J Hazard Mater; 2008 Oct; 158(2-3):366-74. PubMed ID: 18328621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of phenol biodegradation using Bacillus amyloliquefaciens strain WJDB-1 immobilized in alginate-chitosan-alginate (ACA) microcapsules by electrochemical method.
    Lu D; Zhang Y; Niu S; Wang L; Lin S; Wang C; Ye W; Yan C
    Biodegradation; 2012 Apr; 23(2):209-19. PubMed ID: 21809019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution.
    Farkas V; Felinger A; Hegedűsova A; Dékány I; Pernyeszi T
    Colloids Surf B Biointerfaces; 2013 Mar; 103():381-90. PubMed ID: 23247265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth and storage processes in aerobic granules grown on soybean wastewater.
    Ni BJ; Yu HQ
    Biotechnol Bioeng; 2008 Jul; 100(4):664-72. PubMed ID: 18306422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined effect of plate pulsation parameters and phenol concentrations on the phenol removal efficiency of a pulsed plate bioreactor with immobilized cells.
    Shetty KV; Kedargol MR; Srinikethan G
    Water Sci Technol; 2008; 58(6):1253-9. PubMed ID: 18845864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane.
    Yordanova G; Ivanova D; Godjevargova T; Krastanov A
    Biodegradation; 2009 Sep; 20(5):717-26. PubMed ID: 19340590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material.
    Hameed BH; Rahman AA
    J Hazard Mater; 2008 Dec; 160(2-3):576-81. PubMed ID: 18434009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor.
    Tepe O; Dursun AY
    J Hazard Mater; 2008 Feb; 151(1):9-16. PubMed ID: 17611023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling and simulation of steady-state phenol degradation in a pulsed plate bioreactor with immobilised cells of Nocardia hydrocarbonoxydans.
    Shetty KV; Verma DK; Srinikethan G
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):45-56. PubMed ID: 20563604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1.
    Viggiani A; Olivieri G; Siani L; Di Donato A; Marzocchella A; Salatino P; Barbieri P; Galli E
    J Biotechnol; 2006 Jun; 123(4):464-77. PubMed ID: 16490274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-based design of different fedbatch strategies for phenol degradation in acclimatized activated sludge cultures.
    Ben-Youssef C; Vázquez-Rodríguez GA
    Bioresour Technol; 2011 Feb; 102(4):3740-7. PubMed ID: 21193306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of granular activated carbon in an immobilized membrane bioreactor for the biodegradation of phenol by Pseudomonas putida.
    Wang C; Li Y
    Biotechnol Lett; 2007 Sep; 29(9):1353-6. PubMed ID: 17646924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation.
    Ucun H; Yildiz E; Nuhoglu A
    Bioresour Technol; 2010 May; 101(9):2965-71. PubMed ID: 20053552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.