These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20615946)

  • 1. Paired neuron recordings in the prefrontal and inferotemporal cortices reveal that spatial selection precedes object identification during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13105-10. PubMed ID: 20615946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of prefrontal cortex inactivation on object responses of single neurons in the inferotemporal cortex during visual search.
    Monosov IE; Sheinberg DL; Thompson KG
    J Neurosci; 2011 Nov; 31(44):15956-61. PubMed ID: 22049438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal basis of covert spatial attention in the frontal eye field.
    Thompson KG; Biscoe KL; Sato TR
    J Neurosci; 2005 Oct; 25(41):9479-87. PubMed ID: 16221858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neuronal population correlates of target selection and distractor filtering.
    Astrand E; Wardak C; Ben Hamed S
    Neuroimage; 2020 Apr; 209():116517. PubMed ID: 31923605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Source for Feature-Based Attention in the Prefrontal Cortex.
    Bichot NP; Heard MT; DeGennaro EM; Desimone R
    Neuron; 2015 Nov; 88(4):832-44. PubMed ID: 26526392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search.
    Thompson KG; Hanes DP; Bichot NP; Schall JD
    J Neurophysiol; 1996 Dec; 76(6):4040-55. PubMed ID: 8985899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus.
    Sommer MA; Wurtz RH
    J Neurophysiol; 2001 Apr; 85(4):1673-85. PubMed ID: 11287490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of experience on the representation of object-centered space in the macaque supplementary eye field.
    Moorman DE; Olson CR
    J Neurophysiol; 2007 Mar; 97(3):2159-73. PubMed ID: 17202234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of eye movements and spatial attention.
    Moore T; Fallah M
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1273-6. PubMed ID: 11158629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-based attention and spatial selection in frontal eye fields during natural scene search.
    Ramkumar P; Lawlor PN; Glaser JI; Wood DK; Phillips AN; Segraves MA; Kording KP
    J Neurophysiol; 2016 Sep; 116(3):1328-43. PubMed ID: 27250912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of what and where in the primate prefrontal cortex.
    Rao SC; Rainer G; Miller EK
    Science; 1997 May; 276(5313):821-4. PubMed ID: 9115211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serial, covert shifts of attention during visual search are reflected by the frontal eye fields and correlated with population oscillations.
    Buschman TJ; Miller EK
    Neuron; 2009 Aug; 63(3):386-96. PubMed ID: 19679077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of simultaneously recorded spiking activity and local field potentials suggest that spatial selection emerges in the frontal eye field.
    Monosov IE; Trageser JC; Thompson KG
    Neuron; 2008 Feb; 57(4):614-25. PubMed ID: 18304489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential neuronal representation of spatial attention dependent on relative target locations during multiple object tracking.
    Matsushima A; Tanaka M
    J Neurosci; 2014 Jul; 34(30):9963-9. PubMed ID: 25057198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of auditory and visual location information in the monkey prefrontal cortex.
    Artchakov D; Tikhonravov D; Vuontela V; Linnankoski I; Korvenoja A; Carlson S
    Exp Brain Res; 2007 Jul; 180(3):469-79. PubMed ID: 17390128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial Neuronal Integration Supports a Global Representation of Visual Numerosity in Primate Association Cortices.
    Viswanathan P; Nieder A
    J Cogn Neurosci; 2020 Jun; 32(6):1184-1197. PubMed ID: 32073351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement.
    Hamker FH
    Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstimulation of the frontal eye field and its effects on covert spatial attention.
    Moore T; Fallah M
    J Neurophysiol; 2004 Jan; 91(1):152-62. PubMed ID: 13679398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How parallel is visual processing in the ventral pathway?
    Rousselet GA; Thorpe SJ; Fabre-Thorpe M
    Trends Cogn Sci; 2004 Aug; 8(8):363-70. PubMed ID: 15335463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position.
    DiCarlo JJ; Maunsell JH
    J Neurophysiol; 2003 Jun; 89(6):3264-78. PubMed ID: 12783959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.