BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20615970)

  • 1. Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors.
    Voortman J; Lee JH; Killian JK; Suuriniemi M; Wang Y; Lucchi M; Smith WI; Meltzer P; Wang Y; Giaccone G
    Proc Natl Acad Sci U S A; 2010 Jul; 107(29):13040-5. PubMed ID: 20615970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D.
    Simbolo M; Mafficini A; Sikora KO; Fassan M; Barbi S; Corbo V; Mastracci L; Rusev B; Grillo F; Vicentini C; Ferrara R; Pilotto S; Davini F; Pelosi G; Lawlor RT; Chilosi M; Tortora G; Bria E; Fontanini G; Volante M; Scarpa A
    J Pathol; 2017 Mar; 241(4):488-500. PubMed ID: 27873319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Typical and atypical carcinoid tumors of the lung are characterized by 11q deletions as detected by comparative genomic hybridization.
    Walch AK; Zitzelsberger HF; Aubele MM; Mattis AE; Bauchinger M; Candidus S; Präuer HW; Werner M; Höfler H
    Am J Pathol; 1998 Oct; 153(4):1089-98. PubMed ID: 9777940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of drs tumor suppressor gene in highly malignant human pulmonary neuroendocrine tumors.
    Shimakage M; Kodama K; Kawahara K; Kim CJ; Ikeda Y; Yutsudo M; Inoue H
    Oncol Rep; 2009 Jun; 21(6):1367-72. PubMed ID: 19424611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathways Impacted by Genomic Alterations in Pulmonary Carcinoid Tumors.
    Asiedu MK; Thomas CF; Dong J; Schulte SC; Khadka P; Sun Z; Kosari F; Jen J; Molina J; Vasmatzis G; Kuang R; Aubry MC; Yang P; Wigle DA
    Clin Cancer Res; 2018 Apr; 24(7):1691-1704. PubMed ID: 29351916
    [No Abstract]   [Full Text] [Related]  

  • 6. An in-silico analysis reveals further evidence of an aggressive subset of lung carcinoids sharing molecular features of high-grade neuroendocrine neoplasms.
    Pelosi G; Melocchi V; Dama E; Hofman P; De Luca M; Albini A; Gemelli M; Ricotta R; Papotti M; La Rosa S; Uccella S; Harari S; Sonzogni A; Asiedu MK; Wigle DA; Bianchi F
    Exp Mol Pathol; 2024 Feb; 135():104882. PubMed ID: 38237798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities.
    Swarts DR; Ramaekers FC; Speel EJ
    Biochim Biophys Acta; 2012 Dec; 1826(2):255-71. PubMed ID: 22579738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential inactivation of caspase-8 in lung cancers.
    Shivapurkar N; Toyooka S; Eby MT; Huang CX; Sathyanarayana UG; Cunningham HT; Reddy JL; Brambilla E; Takahashi T; Minna JD; Chaudhary PM; Gazdar AF
    Cancer Biol Ther; 2002; 1(1):65-9. PubMed ID: 12170765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landscape of somatic allelic imbalances and copy number alterations in human lung carcinoma.
    Staaf J; Isaksson S; Karlsson A; Jönsson M; Johansson L; Jönsson P; Botling J; Micke P; Baldetorp B; Planck M
    Int J Cancer; 2013 May; 132(9):2020-31. PubMed ID: 23023297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of chromosome-11 aberrations in pulmonary and gastrointestinal carcinoids: an array comparative genomic hybridization-based study.
    Petzmann S; Ullmann R; Halbwedl I; Popper HH
    Virchows Arch; 2004 Aug; 445(2):151-9. PubMed ID: 15235910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Characterization of the Genomic Landscape in Chinese Pulmonary Neuroendocrine Tumors Reveals Prognostic and Therapeutic Markers (CSWOG-1901).
    Peng W; Cao L; Chen L; Lin G; Zhu B; Hu X; Lin Y; Zhang S; Jiang M; Wang J; Li J; Li C; Shao L; Du H; Hou T; Chen Z; Xiang J; Pu X; Li J; Xu F; Loong H; Wu L
    Oncologist; 2022 Mar; 27(2):e116-e125. PubMed ID: 35641209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of deregulation of apoptosis and cell cycle in neuroendocrine tumors of the lung via NanoString nCounter expression analysis.
    Walter RF; Werner R; Ting S; Vollbrecht C; Theegarten D; Christoph DC; Schmid KW; Wohlschlaeger J; Mairinger FD
    Oncotarget; 2015 Sep; 6(28):24690-8. PubMed ID: 26008974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of fibroblast growth factor receptor 1 in small-cell lung cancer.
    Thomas A; Lee JH; Abdullaev Z; Park KS; Pineda M; Saidkhodjaeva L; Miettinen M; Wang Y; Pack SD; Giaccone G
    J Thorac Oncol; 2014 Apr; 9(4):567-71. PubMed ID: 24736083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA methylation landscape of small cell lung cancer suggests a differentiation defect of neuroendocrine cells.
    Kalari S; Jung M; Kernstine KH; Takahashi T; Pfeifer GP
    Oncogene; 2013 Jul; 32(30):3559-68. PubMed ID: 22907430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma-like and Non-Small Cell Carcinoma-like Subsets.
    Rekhtman N; Pietanza MC; Hellmann MD; Naidoo J; Arora A; Won H; Halpenny DF; Wang H; Tian SK; Litvak AM; Paik PK; Drilon AE; Socci N; Poirier JT; Shen R; Berger MF; Moreira AL; Travis WD; Rudin CM; Ladanyi M
    Clin Cancer Res; 2016 Jul; 22(14):3618-29. PubMed ID: 26960398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA methylation profiles of lung tumors.
    Toyooka S; Toyooka KO; Maruyama R; Virmani AK; Girard L; Miyajima K; Harada K; Ariyoshi Y; Takahashi T; Sugio K; Brambilla E; Gilcrease M; Minna JD; Gazdar AF
    Mol Cancer Ther; 2001 Nov; 1(1):61-7. PubMed ID: 12467239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unbalanced chromosomal aberrations in neuroendocrine lung tumors as detected by comparative genomic hybridization.
    Ullmann R; Schwendel A; Klemen H; Wolf G; Petersen I; Popper HH
    Hum Pathol; 1998 Oct; 29(10):1145-9. PubMed ID: 9781656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic alterations in well-differentiated gastrointestinal and bronchial neuroendocrine tumors (carcinoids): marked differences indicating diversity in molecular pathogenesis.
    Zhao J; de Krijger RR; Meier D; Speel EJ; Saremaslani P; Muletta-Feurer S; Matter C; Roth J; Heitz PU; Komminoth P
    Am J Pathol; 2000 Nov; 157(5):1431-8. PubMed ID: 11073802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative genomic analysis of small-cell lung carcinoma reveals correlates of sensitivity to bcl-2 antagonists and uncovers novel chromosomal gains.
    Olejniczak ET; Van Sant C; Anderson MG; Wang G; Tahir SK; Sauter G; Lesniewski R; Semizarov D
    Mol Cancer Res; 2007 Apr; 5(4):331-9. PubMed ID: 17426248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Array-comparative genomic hybridization reveals loss of SOCS6 is associated with poor prognosis in primary lung squamous cell carcinoma.
    Sriram KB; Larsen JE; Savarimuthu Francis SM; Wright CM; Clarke BE; Duhig EE; Brown KM; Hayward NK; Yang IA; Bowman RV; Fong KM
    PLoS One; 2012; 7(2):e30398. PubMed ID: 22363434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.