BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 20615997)

  • 21. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research.
    Spencer JP; Abd El Mohsen MM; Minihane AM; Mathers JC
    Br J Nutr; 2008 Jan; 99(1):12-22. PubMed ID: 17666146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic transformations of dietary polyphenols: comparison between in vitro colonic and hepatic models and in vivo urinary metabolites.
    Vetrani C; Rivellese AA; Annuzzi G; Adiels M; Borén J; Mattila I; Orešič M; Aura AM
    J Nutr Biochem; 2016 Jul; 33():111-8. PubMed ID: 27155917
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Colonic metabolites of berry polyphenols: the missing link to biological activity?
    Williamson G; Clifford MN
    Br J Nutr; 2010 Oct; 104 Suppl 3():S48-66. PubMed ID: 20955650
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial and host cells acquire enhanced oxidant-scavenging abilities by binding polyphenols.
    Ginsburg I; Kohen R; Koren E
    Arch Biochem Biophys; 2011 Feb; 506(1):12-23. PubMed ID: 21081104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The metabolic fate of dietary polyphenols in humans.
    Rechner AR; Kuhnle G; Bremner P; Hubbard GP; Moore KP; Rice-Evans CA
    Free Radic Biol Med; 2002 Jul; 33(2):220-35. PubMed ID: 12106818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of microbial metabolites derived from in vitro fecal fermentation of different polyphenolic food sources.
    Dall'Asta M; Calani L; Tedeschi M; Jechiu L; Brighenti F; Del Rio D
    Nutrition; 2012 Feb; 28(2):197-203. PubMed ID: 22208556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How should we assess the effects of exposure to dietary polyphenols in vitro?
    Kroon PA; Clifford MN; Crozier A; Day AJ; Donovan JL; Manach C; Williamson G
    Am J Clin Nutr; 2004 Jul; 80(1):15-21. PubMed ID: 15213022
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Host: Microbiome co-metabolic processing of dietary polyphenols - An acute, single blinded, cross-over study with different doses of apple polyphenols in healthy subjects.
    Trošt K; Ulaszewska MM; Stanstrup J; Albanese D; De Filippo C; Tuohy KM; Natella F; Scaccini C; Mattivi F
    Food Res Int; 2018 Oct; 112():108-128. PubMed ID: 30131118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dietary phenolics, absorption, mammalian and microbial metabolism and colonic health.
    Crozier A
    Mol Nutr Food Res; 2009 May; 53 Suppl 1():S5-6. PubMed ID: 19475594
    [No Abstract]   [Full Text] [Related]  

  • 30. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.
    Barroso E; Sánchez-Patán F; Martín-Alvarez PJ; Bartolomé B; Moreno-Arribas MV; Peláez C; Requena T; van de Wiele T; Martínez-Cuesta MC
    J Agric Food Chem; 2013 Oct; 61(42):10163-72. PubMed ID: 24073689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.
    Llorach R; Garrido I; Monagas M; Urpi-Sarda M; Tulipani S; Bartolome B; Andres-Lacueva C
    J Proteome Res; 2010 Nov; 9(11):5859-67. PubMed ID: 20853910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
    Shortt C; Hasselwander O; Meynier A; Nauta A; Fernández EN; Putz P; Rowland I; Swann J; Türk J; Vermeiren J; Antoine JM
    Eur J Nutr; 2018 Feb; 57(1):25-49. PubMed ID: 29086061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolism of dietary polyphenols and possible interactions with drugs.
    Lambert JD; Sang S; Lu AY; Yang CS
    Curr Drug Metab; 2007 Jun; 8(5):499-507. PubMed ID: 17584021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols.
    Williamson G; Clifford MN
    Biochem Pharmacol; 2017 Sep; 139():24-39. PubMed ID: 28322745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Berry flavonoids and phenolics: bioavailability and evidence of protective effects.
    Del Rio D; Borges G; Crozier A
    Br J Nutr; 2010 Oct; 104 Suppl 3():S67-90. PubMed ID: 20955651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolism and bioavailability of flavonoids in chemoprevention: current analytical strategies and future prospectus.
    Prasain JK; Barnes S
    Mol Pharm; 2007; 4(6):846-64. PubMed ID: 18052086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats.
    Dolara P; Luceri C; De Filippo C; Femia AP; Giovannelli L; Caderni G; Cecchini C; Silvi S; Orpianesi C; Cresci A
    Mutat Res; 2005 Dec; 591(1-2):237-46. PubMed ID: 16293270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals.
    Possemiers S; Bolca S; Verstraete W; Heyerick A
    Fitoterapia; 2011 Jan; 82(1):53-66. PubMed ID: 20655994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary fiber as a carrier of dietary antioxidants: an essential physiological function.
    Saura-Calixto F
    J Agric Food Chem; 2011 Jan; 59(1):43-9. PubMed ID: 21142013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms.
    Singh M; Arseneault M; Sanderson T; Murthy V; Ramassamy C
    J Agric Food Chem; 2008 Jul; 56(13):4855-73. PubMed ID: 18557624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.