BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20616063)

  • 1. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity.
    Ng AC; Eisenberg JM; Heath RJ; Huett A; Robinson CM; Nau GJ; Xavier RJ
    Proc Natl Acad Sci U S A; 2011 Mar; 108 Suppl 1(Suppl 1):4631-8. PubMed ID: 20616063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine-rich repeat (LRR) proteins: integrators of pattern recognition and signaling in immunity.
    Ng A; Xavier RJ
    Autophagy; 2011 Sep; 7(9):1082-4. PubMed ID: 21606681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative sequence analysis of leucine-rich repeats (LRRs) within vertebrate toll-like receptors.
    Matsushima N; Tanaka T; Enkhbayar P; Mikami T; Taga M; Yamada K; Kuroki Y
    BMC Genomics; 2007 May; 8():124. PubMed ID: 17517123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional study of an LRR domain containing membrane protein in Litopenaeus vannamei.
    Zhang H; Li S; Wang F; Xiang J; Li F
    Dev Comp Immunol; 2020 Aug; 109():103713. PubMed ID: 32304716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns.
    Dolan J; Walshe K; Alsbury S; Hokamp K; O'Keeffe S; Okafuji T; Miller SF; Tear G; Mitchell KJ
    BMC Genomics; 2007 Sep; 8():320. PubMed ID: 17868438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Report of leucine-rich repeats (LRRs) from Scylla serrata: Ontogeny, molecular cloning, characterization and expression analysis following ligand stimulation, and upon bacterial and viral infections.
    Vidya R; Makesh M; Purushothaman CS; Chaudhari A; Gireesh-Babu P; Rajendran KV
    Gene; 2016 Sep; 590(1):159-68. PubMed ID: 27328453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana.
    Mondragón-Palomino M; Meyers BC; Michelmore RW; Gaut BS
    Genome Res; 2002 Sep; 12(9):1305-15. PubMed ID: 12213767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.
    Rairdan GJ; Collier SM; Sacco MA; Baldwin TT; Boettrich T; Moffett P
    Plant Cell; 2008 Mar; 20(3):739-51. PubMed ID: 18344282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the evolution of extracellular leucine-rich repeats in metazoans with special reference to Toll-like receptor 4.
    Dhar D; Dey D; Basu S
    J Biosci; 2019 Mar; 44(1):. PubMed ID: 30837369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular insights of a novel cephalopod toll-like receptor homologue in Sepiella japonica, revealing its function under the stress of aquatic pathogenic bacteria.
    Liu H; Huo L; Yu Q; Ge D; Chi C; Lv Z; Wang T
    Fish Shellfish Immunol; 2019 Jul; 90():297-307. PubMed ID: 31059811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding diversity of human innate immunity receptors: analysis of surface features of leucine-rich repeat domains in NLRs and TLRs.
    Istomin AY; Godzik A
    BMC Immunol; 2009 Sep; 10():48. PubMed ID: 19728889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-structure-function relations of the mosquito leucine-rich repeat immune proteins.
    Waterhouse RM; Povelones M; Christophides GK
    BMC Genomics; 2010 Sep; 11():531. PubMed ID: 20920294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms and pathways of innate immune activation and regulation in health and cancer.
    Cui J; Chen Y; Wang HY; Wang RF
    Hum Vaccin Immunother; 2014; 10(11):3270-85. PubMed ID: 25625930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of protein-protein interactions in Toll-like receptor function.
    Berglund NA; Kargas V; Ortiz-Suarez ML; Bond PJ
    Prog Biophys Mol Biol; 2015 Oct; 119(1):72-83. PubMed ID: 26144017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis.
    Meyers BC; Kozik A; Griego A; Kuang H; Michelmore RW
    Plant Cell; 2003 Apr; 15(4):809-34. PubMed ID: 12671079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity.
    Matsushima N; Miyashita H; Enkhbayar P; Kretsinger RH
    Biomolecules; 2015 Aug; 5(3):1955-78. PubMed ID: 26295267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leucine-rich repeat domain in plant innate immunity: a wealth of possibilities.
    Padmanabhan M; Cournoyer P; Dinesh-Kumar SP
    Cell Microbiol; 2009 Feb; 11(2):191-8. PubMed ID: 19016785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The expression of leucine-rich repeat gene family members in colorectal cancer.
    Piepoli A; Palmieri O; Maglietta R; Panza A; Cattaneo E; Latiano A; Laczko E; Gentile A; Carella M; Mazzoccoli G; Ancona N; Marra G; Andriulli A
    Exp Biol Med (Maywood); 2012 Oct; 237(10):1123-8. PubMed ID: 23045723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular evolution of vertebrate Toll-like receptors: evolutionary rate difference between their leucine-rich repeats and their TIR domains.
    Mikami T; Miyashita H; Takatsuka S; Kuroki Y; Matsushima N
    Gene; 2012 Jul; 503(2):235-43. PubMed ID: 22587897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyses of non-leucine-rich repeat (non-LRR) regions intervening between LRRs in proteins.
    Matsushima N; Mikami T; Tanaka T; Miyashita H; Yamada K; Kuroki Y
    Biochim Biophys Acta; 2009 Oct; 1790(10):1217-37. PubMed ID: 19580846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.