BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20616115)

  • 1. PH1-derived bivalent bibodies and trivalent tribodies bind differentially to shed and tumour cell-associated MUC1.
    Schoonooghe S; Burvenich I; Vervoort L; De Vos F; Mertens N; Grooten J
    Protein Eng Des Sel; 2010 Sep; 23(9):721-8. PubMed ID: 20616115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient production of human bivalent and trivalent anti-MUC1 Fab-scFv antibodies in Pichia pastoris.
    Schoonooghe S; Kaigorodov V; Zawisza M; Dumolyn C; Haustraete J; Grooten J; Mertens N
    BMC Biotechnol; 2009 Aug; 9():70. PubMed ID: 19671134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human immunoglobulin G1 antibody originating from an in vitro-selected Fab phage antibody binds avidly to tumor-associated MUC1 and is efficiently internalized.
    Henderikx P; Coolen-van Neer N; Jacobs A; van der Linden E; Arends JW; Müllberg J; Hoogenboom HR
    Am J Pathol; 2002 May; 160(5):1597-608. PubMed ID: 12000712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering and expression of bibody and tribody constructs in mammalian cells and in the yeast Pichia pastoris.
    Schoonooghe S
    Methods Mol Biol; 2012; 899():157-75. PubMed ID: 22735952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human single-chain Fv antibodies to MUC1 core peptide selected from phage display libraries recognize unique epitopes and predominantly bind adenocarcinoma.
    Henderikx P; Kandilogiannaki M; Petrarca C; von Mensdorff-Pouilly S; Hilgers JH; Krambovitis E; Arends JW; Hoogenboom HR
    Cancer Res; 1998 Oct; 58(19):4324-32. PubMed ID: 9766660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Therapeutic assessment of SEED: a new engineered antibody platform designed to generate mono- and bispecific antibodies.
    Muda M; Gross AW; Dawson JP; He C; Kurosawa E; Schweickhardt R; Dugas M; Soloviev M; Bernhardt A; Fischer D; Wesolowski JS; Kelton C; Neuteboom B; Hock B
    Protein Eng Des Sel; 2011 May; 24(5):447-54. PubMed ID: 21498564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics.
    Friedrich L; Stangl S; Hahne H; Küster B; Köhler P; Multhoff G; Skerra A
    Protein Eng Des Sel; 2010 Apr; 23(4):161-8. PubMed ID: 20123884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epitope mapping of antigenic MUC1 peptides to breast cancer antibody fragment B27.29: a heteronuclear NMR study.
    Grinstead JS; Schuman JT; Campbell AP
    Biochemistry; 2003 Dec; 42(48):14293-305. PubMed ID: 14640698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUC1/X protein immunization enhances cDNA immunization in generating anti-MUC1 alpha/beta junction antibodies that target malignant cells.
    Rubinstein DB; Karmely M; Ziv R; Benhar I; Leitner O; Baron S; Katz BZ; Wreschner DH
    Cancer Res; 2006 Dec; 66(23):11247-53. PubMed ID: 17145869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a novel bi-specific monoclonal antibody approach for tumour targeting.
    Koumarianou AA; Hudson M; Williams R; Epenetos AA; Stamp GW
    Br J Cancer; 1999 Oct; 81(3):431-9. PubMed ID: 10507767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional humanization of an anti-CD16 Fab fragment: obstacles of switching from murine {lambda} to human {lambda} or {kappa} light chains.
    Schlapschy M; Fogarasi M; Gruber H; Gresch O; Schäfer C; Aguib Y; Skerra A
    Protein Eng Des Sel; 2009 Mar; 22(3):175-88. PubMed ID: 19022801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure/activity studies of the anti-MUC1 monoclonal antibody C595 and synthetic MUC1 mucin-core-related peptides and glycopeptides.
    Spencer DI; Missailidis S; Denton G; Murray A; Brady K; Matteis CI; Searle MS; Tendler SJ; Price MR
    Biospectroscopy; 1999; 5(2):79-91. PubMed ID: 10217327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of dual-variable-domain immunoglobulin molecules for dual-specific targeting.
    Gu J; Ghayur T
    Methods Enzymol; 2012; 502():25-41. PubMed ID: 22208980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering of stable bispecific antibodies targeting IL-17A and IL-23.
    Mabry R; Lewis KE; Moore M; McKernan PA; Bukowski TR; Bontadelli K; Brender T; Okada S; Lum K; West J; Kuijper JL; Ardourel D; Franke S; Lockwood L; Vu T; Frank A; Appleby MW; Wolf A; Reardon B; Hamacher NB; Stevens B; Lewis P; Lewis KB; Gilbertson DG; Lantry M; Julien SH; Ostrander C; Chan C; Byrnes-Blake K; Brody J; Presnell S; Meengs B; Levin SD; Snavely M
    Protein Eng Des Sel; 2010 Mar; 23(3):115-27. PubMed ID: 20022918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct detection and quantitation of a distinct T-cell epitope derived from tumor-specific epithelial cell-associated mucin using human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells.
    Cohen CJ; Hoffmann N; Farago M; Hoogenboom HR; Eisenbach L; Reiter Y
    Cancer Res; 2002 Oct; 62(20):5835-44. PubMed ID: 12384546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity.
    Nielsen UB; Adams GP; Weiner LM; Marks JD
    Cancer Res; 2000 Nov; 60(22):6434-40. PubMed ID: 11103810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain.
    Schoonjans R; Willems A; Schoonooghe S; Leoen J; Grooten J; Mertens N
    Biomol Eng; 2001 Jun; 17(6):193-202. PubMed ID: 11337278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design.
    Deyev SM; Lebedenko EN
    Bioessays; 2008 Sep; 30(9):904-18. PubMed ID: 18693269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fab chains as an efficient heterodimerization scaffold for the production of recombinant bispecific and trispecific antibody derivatives.
    Schoonjans R; Willems A; Schoonooghe S; Fiers W; Grooten J; Mertens N
    J Immunol; 2000 Dec; 165(12):7050-7. PubMed ID: 11120833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional humanization of an anti-CD30 Fab fragment for the immunotherapy of Hodgkin's lymphoma using an in vitro evolution approach.
    Schlapschy M; Gruber H; Gresch O; Schäfer C; Renner C; Pfreundschuh M; Skerra A
    Protein Eng Des Sel; 2004 Dec; 17(12):847-60. PubMed ID: 15708864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.