These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Physics and control of wall turbulence for drag reduction. Kim J Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1396-411. PubMed ID: 21382821 [TBL] [Abstract][Full Text] [Related]
4. Improved jet noise modeling using a new time-scale. Azarpeyvand M; Self RH J Acoust Soc Am; 2009 Sep; 126(3):1015-25. PubMed ID: 19739714 [TBL] [Abstract][Full Text] [Related]
5. Earthquake Shaking and Damage to Buildings: Recent evidence for severe ground shaking raises questions about the earthquake resistance of structures. Page RA; Joyner WB; Blume JA Science; 1975 Aug; 189(4203):601-8. PubMed ID: 17838741 [TBL] [Abstract][Full Text] [Related]
6. Boundary Effects on Diffusiophoresis of Cylindrical Particles in Nonelectrolyte Gradients. Keh HJ; Hsu JH J Colloid Interface Sci; 2000 Jan; 221(2):210-222. PubMed ID: 10631022 [TBL] [Abstract][Full Text] [Related]
7. Drag reduction in turbulent boundary layers by in-plane wall motion. Quadrio M Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1428-42. PubMed ID: 21382823 [TBL] [Abstract][Full Text] [Related]
8. Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows. Nicolas A; Zentgraf F; Linne M; Dreizler A; Peterson B Exp Fluids; 2023; 64(3):50. PubMed ID: 36844890 [TBL] [Abstract][Full Text] [Related]
10. Effect of blood flow on near-the-wall mass transport of drugs and other bioactive agents: a simple formula to estimate boundary layer concentrations. Rugonyi S J Biomech Eng; 2008 Apr; 130(2):021010. PubMed ID: 18412497 [TBL] [Abstract][Full Text] [Related]
11. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Khanafer KM; Bull JL; Upchurch GR; Berguer R Ann Vasc Surg; 2007 Jan; 21(1):67-74. PubMed ID: 17349339 [TBL] [Abstract][Full Text] [Related]
12. Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests. Defraeye T; Blocken B; Koninckx E; Hespel P; Carmeliet J J Biomech; 2010 May; 43(7):1262-8. PubMed ID: 20171640 [TBL] [Abstract][Full Text] [Related]
13. The interaction between inner and outer regions of turbulent wall-bounded flow. Morrison JF Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):683-98. PubMed ID: 17244583 [TBL] [Abstract][Full Text] [Related]
14. Visualization of vorticity and vortices in wall-bounded turbulent flows. Helgeland A; Pettersson Reif BA; Andreassen Ø; Wasberg CE IEEE Trans Vis Comput Graph; 2007; 13(5):1055-66. PubMed ID: 17622687 [TBL] [Abstract][Full Text] [Related]
15. Atmospheric electrical detection of organized convection. Markson R Science; 1975 Jun; 188(4194):1171-7. PubMed ID: 17818153 [TBL] [Abstract][Full Text] [Related]
16. Ventilation equations for improved exothermic process control. McKernan JL; Ellenbecker MJ Ann Occup Hyg; 2007 Apr; 51(3):269-79. PubMed ID: 17351265 [TBL] [Abstract][Full Text] [Related]
17. An analytical model for turbulence scattered rays in the shadow zone for outdoor sound propagation calculation. Lam YW J Acoust Soc Am; 2009 Mar; 125(3):1340-50. PubMed ID: 19275291 [TBL] [Abstract][Full Text] [Related]
18. Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Kim K; Adrian RJ; Balachandar S; Sureshkumar R Phys Rev Lett; 2008 Apr; 100(13):134504. PubMed ID: 18517960 [TBL] [Abstract][Full Text] [Related]
19. A nonlinear dynamical model for atmospheric boundary layer turbulence. Zheng Z; Liu S Chaos; 1993 Jul; 3(3):305-312. PubMed ID: 12780039 [TBL] [Abstract][Full Text] [Related]
20. Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces. Nguyen QT; Papavassiliou DV Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):063015. PubMed ID: 24483565 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]