These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 20617185)

  • 1. Contribution of GABAergic interneurons to the development of spontaneous activity patterns in cultured neocortical networks.
    Baltz T; de Lima AD; Voigt T
    Front Cell Neurosci; 2010; 4():15. PubMed ID: 20617185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of electrically evoked activity with intrinsic dynamics of cultured cortical networks with and without functional fast GABAergic synaptic transmission.
    Baltz T; Voigt T
    Front Cell Neurosci; 2015; 9():272. PubMed ID: 26236196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.
    Valeeva G; Tressard T; Mukhtarov M; Baude A; Khazipov R
    J Neurosci; 2016 Jun; 36(22):5961-73. PubMed ID: 27251618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks.
    Klueva J; Meis S; de Lima AD; Voigt T; Munsch T
    Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Earliest spontaneous activity differentially regulates neocortical GABAergic interneuron subpopulations.
    de Lima AD; Lima BD; Voigt T
    Eur J Neurosci; 2007 Jan; 25(1):1-16. PubMed ID: 17241262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous development of synchronous oscillatory activity during maturation of cortical networks in vitro.
    Opitz T; De Lima AD; Voigt T
    J Neurophysiol; 2002 Nov; 88(5):2196-206. PubMed ID: 12424261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desynchronization of neocortical networks by asynchronous release of GABA at autaptic and synaptic contacts from fast-spiking interneurons.
    Manseau F; Marinelli S; Méndez P; Schwaller B; Prince DA; Huguenard JR; Bacci A
    PLoS Biol; 2010 Sep; 8(9):. PubMed ID: 20927409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex.
    Benardo LS
    J Neurophysiol; 1997 Jun; 77(6):3134-44. PubMed ID: 9212263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
    Voigt T; Opitz T; de Lima AD
    J Neurosci; 2001 Nov; 21(22):8895-905. PubMed ID: 11698601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homeostatically regulated spontaneous neuronal discharges protect developing cerebral cortex networks from becoming hyperactive following prolonged blockade of excitatory synaptic receptors.
    Corner MA; Baker RE; van Pelt J
    Brain Res; 2006 Aug; 1106(1):40-45. PubMed ID: 16836981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of early spontaneous network activity and GABAergic neurons development by thyroid hormone.
    Westerholz S; de Lima AD; Voigt T
    Neuroscience; 2010 Jun; 168(2):573-89. PubMed ID: 20338226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons.
    Iida S; Shimba K; Sakai K; Kotani K; Jimbo Y
    Biochem Biophys Res Commun; 2018 Jun; 501(1):152-157. PubMed ID: 29723524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential postsynaptic maturation governs the temporal order of GABAergic and glutamatergic synaptogenesis in rat embryonic cultures.
    Deng L; Yao J; Fang C; Dong N; Luscher B; Chen G
    J Neurosci; 2007 Oct; 27(40):10860-9. PubMed ID: 17913919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing properties of GABA(A) receptor-mediated signaling during early neocortical development.
    Owens DF; Liu X; Kriegstein AR
    J Neurophysiol; 1999 Aug; 82(2):570-83. PubMed ID: 10444657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory physiological responses to chronic blockade of amino acid receptors during early development in spontaneously active organotypic cerebral cortex explants cultured in vitro.
    Corner MA; Baker RE; van Pelt J; Wolters PS
    Prog Brain Res; 2005; 147():231-48. PubMed ID: 15581710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NKCC1 activity modulates formation of functional inhibitory synapses in cultured neocortical neurons.
    Nakanishi K; Yamada J; Takayama C; Oohira A; Fukuda A
    Synapse; 2007 Mar; 61(3):138-49. PubMed ID: 17146765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of low magnesium-induced spontaneous synchronized bursting and GABAergic modulation in cultured rat neocortical neurons.
    Watanabe S; Jimbo Y; Kamioka H; Kirino Y; Kawana A
    Neurosci Lett; 1996 May; 210(1):41-4. PubMed ID: 8762187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.