These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20617188)

  • 1. Long-Term Neural Recordings Using MEMS Based Movable Microelectrodes in the Brain.
    Jackson N; Sridharan A; Anand S; Baker M; Okandan M; Muthuswamy J
    Front Neuroeng; 2010; 3():10. PubMed ID: 20617188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive movable neural interfaces for monitoring single neurons in the brain.
    Muthuswamy J; Anand S; Sridharan A
    Front Neurosci; 2011; 5():94. PubMed ID: 21927593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous control for mechanically stable navigation of microscale implants in brain tissue to record neural activity.
    Anand S; Kumar SS; Muthuswamy J
    Biomed Microdevices; 2016 Aug; 18(4):72. PubMed ID: 27457752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents.
    Muthuswamy J; Okandan M; Gilletti A; Baker MS; Jain T
    IEEE Trans Biomed Eng; 2005 Aug; 52(8):1470-7. PubMed ID: 16119243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium oxide based microelectrode arrays for in vitro and in vivo neural recording and stimulation.
    Atmaramani R; Chakraborty B; Rihani RT; Usoro J; Hammack A; Abbott J; Nnoromele P; Black BJ; Pancrazio JJ; Cogan SF
    Acta Biomater; 2020 Jan; 101():565-574. PubMed ID: 31678740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic microactuators for precise positioning of neural microelectrodes.
    Muthuswamy J; Okandan M; Jain T; Gilletti A
    IEEE Trans Biomed Eng; 2005 Oct; 52(10):1748-55. PubMed ID: 16235660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in Research of Flexible MEMS Microelectrodes for Neural Interface.
    Tang LJ; Wang MH; Tian HC; Kang XY; Hong W; Liu JQ
    Micromachines (Basel); 2017 Sep; 8(9):. PubMed ID: 30400473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: Proposed guidelines based on 10-year experience.
    Lehongre K; Lambrecq V; Whitmarsh S; Frazzini V; Cousyn L; Soleil D; Fernandez-Vidal S; Mathon B; Houot M; Lemaréchal JD; Clemenceau S; Hasboun D; Adam C; Navarro V
    Neuroimage; 2022 Jul; 254():119116. PubMed ID: 35318150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term changes in the material properties of brain tissue at the implant-tissue interface.
    Sridharan A; Rajan SD; Muthuswamy J
    J Neural Eng; 2013 Dec; 10(6):066001. PubMed ID: 24099854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of gliosis around moveable implants in the brain.
    Stice P; Muthuswamy J
    J Neural Eng; 2009 Aug; 6(4):046004. PubMed ID: 19556680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectrode array recordings from the ventral roots in chronically implanted cats.
    Debnath S; Bauman MJ; Fisher LE; Weber DJ; Gaunt RA
    Front Neurol; 2014; 5():104. PubMed ID: 25071697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Packaging and Non-Hermetic Encapsulation Technology for Flip Chip on Implantable MEMS Devices.
    Sutanto J; Anand S; Sridharan A; Korb R; Zhou L; Baker MS; Okandan M; Muthuswamy J
    J Microelectromech Syst; 2012 Apr; 21(4):882-896. PubMed ID: 24431925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term
    Jang JW; Kang YN; Seo HW; Kim B; Choe HK; Park SH; Lee MG; Kim S
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34795067
    [No Abstract]   [Full Text] [Related]  

  • 17. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications.
    Anand S; Sutanto J; Baker MS; Okandan M; Muthuswamy J
    J Microelectromech Syst; 2012 Jul; 21(5):1172-1186. PubMed ID: 24431926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.