BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 20617334)

  • 1. Disuse of the musculo-skeletal system in space and on earth.
    Narici MV; de Boer MD
    Eur J Appl Physiol; 2011 Mar; 111(3):403-20. PubMed ID: 20617334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of muscle atrophy in microgravity and during prolonged bed rest.
    Droppert PM
    J Br Interplanet Soc; 1993 Mar; 46(3):83-6. PubMed ID: 11539498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: a systematic scoping review.
    Moosavi D; Wolovsky D; Depompeis A; Uher D; Lennington D; Bodden R; Garber CE
    Physiol Res; 2021 Apr; 70(2):119-151. PubMed ID: 33992043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Muscles in microgravity: from fibres to human motion.
    di Prampero PE; Narici MV
    J Biomech; 2003 Mar; 36(3):403-12. PubMed ID: 12594988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors mediating spaceflight-induced skeletal muscle atrophy.
    Lee PHU; Chung M; Ren Z; Mair DB; Kim DH
    Am J Physiol Cell Physiol; 2022 Mar; 322(3):C567-C580. PubMed ID: 35171699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terrestrial applications of bone and muscle research in microgravity.
    Booth FW
    Adv Space Res; 1994; 14(8):373-6. PubMed ID: 11537942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rat muscle plasticity in response to simulated or real microgravity.
    Mayet-Sornay MH; Desplanches D
    J Gravit Physiol; 1996 Sep; 3(2):50-3. PubMed ID: 11540281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Relationship between simulated weightlessness-induced muscle spindle change and muscle atrophy].
    Zhao XH; Fan XL
    Sheng Li Xue Bao; 2013 Feb; 65(1):96-100. PubMed ID: 23426520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WISE 2005: Aerobic and resistive countermeasures prevent paraspinal muscle deconditioning during 60-day bed rest in women.
    Holt JA; Macias BR; Schneider SM; Watenpaugh DE; Lee SM; Chang DG; Hargens AR
    J Appl Physiol (1985); 2016 May; 120(10):1215-22. PubMed ID: 26893030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight.
    Hargens AR; Bhattacharya R; Schneider SM
    Eur J Appl Physiol; 2013 Sep; 113(9):2183-92. PubMed ID: 23079865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review.
    Lee Satcher R; Fiedler B; Ghali A; Dirschl DR
    J Am Acad Orthop Surg; 2024 Jun; 32(12):535-541. PubMed ID: 38652883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of suspension models and comparison with true weightlessness: "a resumé".
    Musacchia XJ
    Physiologist; 1985; 28(6 Suppl):S237-40. PubMed ID: 11539736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromuscular adaptation to actual and simulated weightlessness.
    Edgerton VR; Roy RR
    Adv Space Biol Med; 1994; 4():33-67. PubMed ID: 7757253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle unweighting: spaceflight and ground-based models.
    Adams GR; Caiozzo VJ; Baldwin KM
    J Appl Physiol (1985); 2003 Dec; 95(6):2185-201. PubMed ID: 14600160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevention of bone loss and muscle atrophy during manned space flight.
    Keller TS; Strauss AM; Szpalski M
    Microgravity Q; 1992 Apr; 2(2):89-102. PubMed ID: 11541051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional insufficiency of the neuromuscular system caused by weightlessness and hypokinesia.
    Kakurin LI; Cherepakhin MA; Ushakov AS; Senkevich YA
    Life Sci Space Res; 1972; 10():61-4. PubMed ID: 11898843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic review of countermeasures to minimise physiological changes and risk of injury to the lumbopelvic area following long-term microgravity.
    Winnard A; Nasser M; Debuse D; Stokes M; Evetts S; Wilkinson M; Hides J; Caplan N
    Musculoskelet Sci Pract; 2017 Jan; 27 Suppl 1():S5-S14. PubMed ID: 28173932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human muscle atrophy in supportlessness: effects of short-term exposure to dry immersion.
    Shenkman BS; Kozlovskaya IB; Nemirovskaya TL; Tcheglova IA
    J Gravit Physiol; 1997 Jul; 4(2):P137-8. PubMed ID: 11540680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
    Gopalakrishnan R; Genc KO; Rice AJ; Lee SM; Evans HJ; Maender CC; Ilaslan H; Cavanagh PR
    Aviat Space Environ Med; 2010 Feb; 81(2):91-102. PubMed ID: 20131648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.