These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 20617723)

  • 21. Contribution of Miscanthus x giganteus root exudates to the biostimulation of PAH degradation: an in vitro study.
    Técher D; Laval-Gilly P; Henry S; Bennasroune A; Formanek P; Martinez-Chois C; D'Innocenzo M; Muanda F; Dicko A; Rejšek K; Falla J
    Sci Total Environ; 2011 Sep; 409(20):4489-95. PubMed ID: 21782215
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth and antioxidant response in Spirodela polyrrhiza under linear alkylbenzene sulfonate, naphthalene and their joint stress.
    Chai L; Li J; Zhang Y; Liu Y; Wu Z
    Environ Sci Pollut Res Int; 2021 Nov; 28(43):61115-61127. PubMed ID: 34169418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities.
    Xu XJ; Sun JQ; Nie Y; Wu XL
    Chemosphere; 2015 Apr; 125():33-40. PubMed ID: 25655443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular distribution and toxicity assessment of praseodymium by Spirodela polyrrhiza.
    Xu T; Su C; Hu D; Li F; Lu Q; Zhang T; Xu Q
    J Hazard Mater; 2016 Jul; 312():132-140. PubMed ID: 27017399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D; Majumder A; Misra AK; Bandyopadhyay K
    Int J Phytoremediation; 2014; 16(7-12):1119-32. PubMed ID: 24933906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.
    Sun TR; Cang L; Wang QY; Zhou DM; Cheng JM; Xu H
    J Hazard Mater; 2010 Apr; 176(1-3):919-25. PubMed ID: 20005625
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of TiO
    Movafeghi A; Khataee A; Abedi M; Tarrahi R; Dadpour M; Vafaei F
    J Environ Sci (China); 2018 Feb; 64():130-138. PubMed ID: 29478632
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa.
    Yamaga F; Washio K; Morikawa M
    Environ Sci Technol; 2010 Aug; 44(16):6470-4. PubMed ID: 20704249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments.
    Jia H; Lu H; Dai M; Hong H; Liu J; Yan C
    Mar Pollut Bull; 2016 Aug; 109(1):171-177. PubMed ID: 27293074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effect of environment and nutrient factors on the content of nitrogen and phosphorus in two duckweeds species: Spirodela polyrrhiza and Lemna aequinoctialis].
    Chong YX; Hu HY; Qian Y
    Huan Jing Ke Xue; 2005 Sep; 26(5):67-71. PubMed ID: 16366472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glucose and plant exudate enhanced enumeration of bacteria capable of degrading polycyclic aromatic hydrocarbons.
    Thomas JC; Dabkowski RT
    Can J Microbiol; 2011 Dec; 57(12):1067-72. PubMed ID: 22136124
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation.
    Sun R; Belcher RW; Liang J; Wang L; Thater B; Crowley DE; Wei G
    J Environ Sci (China); 2015 Jul; 33():45-59. PubMed ID: 26141877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of root exudates on denitrifier gene abundance, community structure and activity in a micro-polluted constructed wetland.
    Wu H; Wang X; He X; Zhang S; Liang R; Shen J
    Sci Total Environ; 2017 Nov; 598():697-703. PubMed ID: 28456121
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aromatic hydrocarbon compound degradation of phenylacetic acid by indigenous bacterial
    Huang F; Li X; Guo J; Feng H; Yang F
    J Toxicol Environ Health A; 2019; 82(22):1164-1171. PubMed ID: 31833448
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decomposition of 15 aromatic compounds in supercritical water oxidation.
    Yang B; Cheng Z; Gao X; Yuan T; Shen Z
    Chemosphere; 2019 Mar; 218():384-390. PubMed ID: 30476770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of root exudates on gel-beads/reeds combination remediation of high molecular weight polycyclic aromatic hydrocarbons.
    Tian W; Zhao J; Zhou Y; Qiao K; Jin X; Liu Q
    Ecotoxicol Environ Saf; 2017 Jan; 135():158-164. PubMed ID: 27736675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacteria from wheat and cucurbit plant roots metabolize PAHs and aromatic root exudates: Implications for rhizodegradation.
    Ely CS; Smets BF
    Int J Phytoremediation; 2017 Oct; 19(10):877-883. PubMed ID: 28318300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activated sludge microbial communities of a chemical plant wastewater treatment facility with high-strength bromide ions and aromatic substances.
    Zhao YJ; Sato Y; Inaba T; Aoyagi T; Hori T; Habe H
    J Gen Appl Microbiol; 2019 May; 65(2):106-110. PubMed ID: 30068857
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Optimization of Polysaccharide Extraction from Spirodela polyrrhiza by Plackett-Burman Design Combined with Box-Behnken Response Surface Methodology].
    Jiang Z; Wang H; Wu QN
    Zhong Yao Cai; 2015 Jun; 38(6):1283-6. PubMed ID: 26762069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association.
    Toyama T; Ojima T; Tanaka Y; Mori K; Morikawa M
    Water Sci Technol; 2013; 68(3):522-9. PubMed ID: 23925178
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.