These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20618229)

  • 1. Variety of expiratory resistance between different continuous positive airway pressure devices for preterm infants.
    Wald M; Kribs A; Jeitler V; Lirsch D; Pollak A; Kirchner L
    Artif Organs; 2011 Jan; 35(1):22-8. PubMed ID: 20618229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro comparison of noise levels produced by different CPAP generators.
    Kirchner L; Wald M; Jeitler V; Pollak A
    Neonatology; 2012; 101(2):95-100. PubMed ID: 21934335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Technical differences in various CPAP and BiLevel CPAP devices].
    Netzer N; Kirbas G; Matthys H; Werner P
    Pneumologie; 1997 Aug; 51 Suppl 3():789-95. PubMed ID: 9340643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of imposed resistance on tidal volume with 5 neonatal nasal continuous positive airway pressure systems.
    Cook SE; Fedor KL; Chatburn RL
    Respir Care; 2010 May; 55(5):544-8. PubMed ID: 20420723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect on work of breathing of different continuous positive airway pressure devices evaluated in a premature neonatal lung model.
    Nikischin W; Petridis M; Noeske J; Spengler D; von Bismarck P
    Pediatr Crit Care Med; 2011 Nov; 12(6):e376-82. PubMed ID: 21499172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Return of neonatal CPAP resistance - the Medijet device family examined using in vitro flow simulations.
    Falk M; Donaldsson S; Jonsson B; Drevhammar T
    Acta Paediatr; 2017 Nov; 106(11):1760-1766. PubMed ID: 28715132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of seven infant continuous positive airway pressure systems using simulated neonatal breathing.
    Drevhammar T; Nilsson K; Zetterström H; Jonsson B
    Pediatr Crit Care Med; 2012 Mar; 13(2):e113-9. PubMed ID: 21946854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of condensate in the exhalation limb of neonatal circuits on airway pressure during bubble CPAP.
    Youngquist TM; Richardson CP; Diblasi RM
    Respir Care; 2013 Nov; 58(11):1840-6. PubMed ID: 23481441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure stability with CPAP devices: A bench evaluation.
    Louis B; Leroux K; Boucherie M; Isabey D; Grillier-Lanoir V; Fauroux B; Lofaso F
    Sleep Med; 2010 Jan; 11(1):96-9. PubMed ID: 19892594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volume Oscillations Delivered to a Lung Model Using 4 Different Bubble CPAP Systems.
    Poli JA; Richardson CP; DiBlasi RM
    Respir Care; 2015 Mar; 60(3):371-81. PubMed ID: 25425706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharyngeal pressure value using two continuous positive airway pressure devices.
    Colnaghi M; Matassa PG; Fumagalli M; Messina D; Mosca F
    Arch Dis Child Fetal Neonatal Ed; 2008 Jul; 93(4):F302-4. PubMed ID: 18334615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in functional residual capacity during weaning from mechanical ventilation: a pilot study.
    Heinze H; Sedemund-Adib B; Heringlake M; Meier T; Eichler W
    Anesth Analg; 2009 Mar; 108(3):911-5. PubMed ID: 19224803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delivery room continuous positive airway pressure/positive end-expiratory pressure in extremely low birth weight infants: a feasibility trial.
    Finer NN; Carlo WA; Duara S; Fanaroff AA; Donovan EF; Wright LL; Kandefer S; Poole WK;
    Pediatrics; 2004 Sep; 114(3):651-7. PubMed ID: 15342835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Expiratory pressure reduction (C-Flex Method) versus fix CPAP in the therapy for obstructive sleep apnoea].
    Wenzel M; Kerl J; Dellweg D; Barchfeld T; Wenzel G; Köhler D
    Pneumologie; 2007 Nov; 61(11):692-5. PubMed ID: 17661239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Analysis of expiratory pressure reduction (C-Flex method) during CPAP therapy].
    Rühle KH; Domanski U; Happel A; Nilius G
    Pneumologie; 2007 Feb; 61(2):86-9. PubMed ID: 17290312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nasal continuous positive airway pressure (CPAP) for the respiratory care of the newborn infant.
    Diblasi RM
    Respir Care; 2009 Sep; 54(9):1209-35. PubMed ID: 19712498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in lung volume and work of breathing: A comparison of two variable-flow nasal continuous positive airway pressure devices in very low birth weight infants.
    Courtney SE; Aghai ZH; Saslow JG; Pyon KH; Habib RH
    Pediatr Pulmonol; 2003 Sep; 36(3):248-52. PubMed ID: 12910587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breath-dependent pressure fluctuations in various constant- and variable-flow neonatal CPAP devices.
    Auer-Hackenberg L; Stroicz P; Hofstätter E; Brandner J; Haselmann C; Wald M
    Pediatr Pulmonol; 2022 Oct; 57(10):2411-2419. PubMed ID: 35774021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the Effect of Flow and Interface Type on Pressures Delivered With Bubble CPAP in a Simulated Model.
    Bailes SA; Firestone KS; Dunn DK; McNinch NL; Brown MF; Volsko TA
    Respir Care; 2016 Mar; 61(3):333-9. PubMed ID: 26534997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.