BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 20618433)

  • 1. Early cranial patterning in the direct-developing frog Eleutherodactylus coqui revealed through gene expression.
    Kerney R; Gross JB; Hanken J
    Evol Dev; 2010; 12(4):373-82. PubMed ID: 20618433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene expression reveals unique skeletal patterning in the limb of the direct-developing frog, Eleutherodactylus coqui.
    Kerney R; Hanken J
    Evol Dev; 2008; 10(4):439-48. PubMed ID: 18638321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cranial ontogeny in the direct-developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), analyzed using whole-mount immunohistochemistry.
    Hanken J; Klymkowsky MW; Summers CH; Seufert DW; Ingebrigtsen N
    J Morphol; 1992 Jan; 211(1):95-118. PubMed ID: 1371162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Runx2 is essential for larval hyobranchial cartilage formation in Xenopus laevis.
    Kerney R; Gross JB; Hanken J
    Dev Dyn; 2007 Jun; 236(6):1650-62. PubMed ID: 17474117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cranial ontogeny in Philautus silus (Anura: Ranidae: Rhacophorinae) reveals few similarities with other direct-developing anurans.
    Kerney R; Meegaskumbura M; Manamendra-Arachchi K; Hanken J
    J Morphol; 2007 Aug; 268(8):715-25. PubMed ID: 17538972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of distal-less gene expression and inductive interactions in the head of the direct developing frog Eleutherodactylus coqui.
    Fang H; Elinson RP
    Dev Biol; 1996 Oct; 179(1):160-72. PubMed ID: 8873761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletogenesis in Xenopus tropicalis: characteristic bone development in an anuran amphibian.
    Miura S; Hanaoka K; Togashi S
    Bone; 2008 Nov; 43(5):901-9. PubMed ID: 18692165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cranial neural crest-cell migration in the direct-developing frog, Eleutherodactylus coqui: molecular heterogeneity within and among migratory streams.
    Olsson L; Moury DJ; Carl TF; HÃ¥stad O; Hanken J
    Zoology (Jena); 2002; 105(1):3-13. PubMed ID: 16351851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae).
    Jermakowicz WJ; Dorsey DA; Brown AL; Wojciechowski K; Giscombe CL; Graves BM; Summers CH; Ten Eyck GR
    J Morphol; 2004 Aug; 261(2):225-48. PubMed ID: 15216526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic basis of life history evolution in anuran amphibians: thyroid gland development in the direct-developing frog, Eleutherodactylus coqui.
    Jennings DH; Hanken J
    Gen Comp Endocrinol; 1998 Aug; 111(2):225-32. PubMed ID: 9679094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Jaw muscle development as evidence for embryonic repatterning in direct-developing frogs.
    Hanken J; Klymkowsky MW; Alley KE; Jennings DH
    Proc Biol Sci; 1997 Sep; 264(1386):1349-54. PubMed ID: 9332017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor.
    Dong YF; Soung do Y; Schwarz EM; O'Keefe RJ; Drissi H
    J Cell Physiol; 2006 Jul; 208(1):77-86. PubMed ID: 16575901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positionally-dependent chondrogenesis induced by BMP4 is co-regulated by Sox9 and Msx2.
    Semba I; Nonaka K; Takahashi I; Takahashi K; Dashner R; Shum L; Nuckolls GH; Slavkin HC
    Dev Dyn; 2000 Apr; 217(4):401-14. PubMed ID: 10767084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conservation of Pitx1 expression during amphibian limb morphogenesis.
    Chang WY; Khosrowshahian F; Wolanski M; Marshall R; McCormick W; Perry S; Crawford MJ
    Biochem Cell Biol; 2006 Apr; 84(2):257-62. PubMed ID: 16609707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible roles of Runx1 and Sox9 in incipient intramembranous ossification.
    Yamashiro T; Wang XP; Li Z; Oya S; Aberg T; Fukunaga T; Kamioka H; Speck NA; Takano-Yamamoto T; Thesleff I
    J Bone Miner Res; 2004 Oct; 19(10):1671-7. PubMed ID: 15355562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ontogeny of central serotonergic neurons in the directly developing frog, Eleutherodactylus coqui.
    Ten Eyck GR; Jermakowicz WJ; Chinn AF; Summers CH
    Anat Embryol (Berl); 2005 Oct; 210(3):221-33. PubMed ID: 16151854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel regulation of yolk utilization by thyroid hormone in embryos of the direct developing frog Eleutherodactylus coqui.
    Singamsetty S; Elinson RP
    Evol Dev; 2010; 12(5):437-48. PubMed ID: 20883213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leg development in a frog without a tadpole (Eleutherodactylus coqui).
    Elinson RP
    J Exp Zool; 1994 Oct; 270(2):202-10. PubMed ID: 7964555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation.
    Elinson RP; Walton Z; Nath K
    J Exp Zool B Mol Dev Evol; 2008 Nov; 310(7):588-95. PubMed ID: 18668545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg.
    Buchholz DR; Singamsetty S; Karadge U; Williamson S; Langer CE; Elinson RP
    Dev Dyn; 2007 May; 236(5):1259-72. PubMed ID: 17436277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.