These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20619632)

  • 1. Magnetic circular dichroism spectroscopy as a probe of the structures of the metal sites in metalloproteins.
    McMaster J; Oganesyan VS
    Curr Opin Struct Biol; 2010 Oct; 20(5):615-22. PubMed ID: 20619632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic circular dichroism study of a dicobalt(II) methionine aminopeptidase/fumagillin complex and dicobalt II-II and II-III model complexes.
    Larrabee JA; Chyun SA; Volwiler AS
    Inorg Chem; 2008 Nov; 47(22):10499-508. PubMed ID: 18921993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent Raman detected electron spin resonance spectroscopy of metalloproteins: linking electron spin resonance and magnetic circular dichroism.
    Bingham SJ; Wolverson D; Thomson AJ
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1187-90. PubMed ID: 19021521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic circular dichroism spectroscopy of antiferromagnetically coupled hetero-metallic rings [H2NR2][Cr7MF8(O2CCMe3)16].
    Bradley JM; Thomson AJ; McInnes EJ; Winpenny RE; Timco G
    Dalton Trans; 2008 Jul; (25):3311-9. PubMed ID: 18560663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic Circular Dichroism Spectroscopy of Metalloproteins.
    Hales BJ
    Methods Mol Biol; 2019; 1876():213-225. PubMed ID: 30317484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent applications of MCD spectroscopy to metalloenzymes.
    Kirk ML; Peariso K
    Curr Opin Chem Biol; 2003 Apr; 7(2):220-7. PubMed ID: 12714055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic circular dichroism spectroscopy.
    Hales BJ
    Methods Mol Biol; 2011; 766():207-19. PubMed ID: 21833870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic circular dichroism approach to hemoprotein analyses.
    Hatano M; Nozawa T
    Adv Biophys; 1978; 11():95-149. PubMed ID: 354350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circular dichroism and magnetic circular dichroism studies of the biferrous form of the R2 subunit of ribonucleotide reductase from mouse: comparison to the R2 from Escherichia coli and other binuclear ferrous enzymes.
    Strand KR; Yang YS; Andersson KK; Solomon EI
    Biochemistry; 2003 Oct; 42(42):12223-34. PubMed ID: 14567684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A magnetic and electronic circular dichroism study of azurin, plastocyanin, cucumber basic protein, and nitrite reductase based on time-dependent density functional theory calculations.
    Zhekova HR; Seth M; Ziegler T
    J Phys Chem A; 2010 Jun; 114(21):6308-21. PubMed ID: 20450218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR spectroscopy: a powerful technique for the structural and functional investigation of metalloproteins.
    More C; Belle V; Asso M; Fournel A; Roger G; Guigliarelli B; Bertrand P
    Biospectroscopy; 1999; 5(5 Suppl):S3-18. PubMed ID: 10512534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic and density functional studies of the red copper site in nitrosocyanin: role of the protein in determining active site geometric and electronic structure.
    Basumallick L; Sarangi R; DeBeer George S; Elmore B; Hooper AB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2005 Mar; 127(10):3531-44. PubMed ID: 15755175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electron-conformational interactions at the active site of reduced bacterial cytochrome P450cam induced by a substrate and analysis of the electron structure of heme].
    Sharonov IuA
    Mol Biol (Mosk); 1992; 26(6):1251-62. PubMed ID: 1491671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPR spectroscopy as a probe of metal centres in biological systems.
    Hagen WR
    Dalton Trans; 2006 Oct; (37):4415-34. PubMed ID: 16981015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopic and computational study of a non-heme iron [Fe-NO]7 system: exploring the geometric and electronic structures of the nitrosyl adduct of iron superoxide dismutase.
    Jackson TA; Yikilmaz E; Miller AF; Brunold TC
    J Am Chem Soc; 2003 Jul; 125(27):8348-63. PubMed ID: 12837107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nature of the exchange coupling between high-spin Fe(III) heme o3 and CuBII in Escherichia coli quinol oxidase, cytochrome bo3: MCD and EPR studies.
    Cheesman MR; Oganesyan VS; Watmough NJ; Butler CS; Thomson AJ
    J Am Chem Soc; 2004 Apr; 126(13):4157-66. PubMed ID: 15053605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Electron structure of the active center of paramagnetic hemoproteins from the data of low-temperature magnetic circular dichroism. High-spin ferric derivatives].
    Sharonov IuA; Mineev AP
    Mol Biol (Mosk); 1985; 19(2):378-89. PubMed ID: 2987663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray magnetic circular dichroism of Pseudomonas aeruginosa nickel(II) azurin.
    Funk T; Kennepohl P; Di Bilio AJ; Wehbi WA; Young AT; Friedrich S; Arenholz E; Gray HB; Cramer SP
    J Am Chem Soc; 2004 May; 126(18):5859-66. PubMed ID: 15125678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of the Leu513His variant of fungal laccase: effect of increased axial ligand interaction on the geometric and electronic structure of the type 1 Cu site.
    Palmer AE; Szilagyi RK; Cherry JR; Jones A; Xu F; Solomon EI
    Inorg Chem; 2003 Jun; 42(13):4006-17. PubMed ID: 12817956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circular dichroism and magnetic circular dichroism of iron-sulfur proteins.
    Stephens PJ; Thomson AJ; Dunn JB; Keiderling TA; Rawlings J; Rao KK; Hall DO
    Biochemistry; 1978 Oct; 17(22):4770-8. PubMed ID: 728385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.