These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
442 related articles for article (PubMed ID: 20619638)
1. Growth and neutral lipid synthesis in green microalgae: a mathematical model. Packer A; Li Y; Andersen T; Hu Q; Kuang Y; Sommerfeld M Bioresour Technol; 2011 Jan; 102(1):111-7. PubMed ID: 20619638 [TBL] [Abstract][Full Text] [Related]
2. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Li Y; Han D; Sommerfeld M; Hu Q Bioresour Technol; 2011 Jan; 102(1):123-9. PubMed ID: 20594832 [TBL] [Abstract][Full Text] [Related]
3. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Rodolfi L; Chini Zittelli G; Bassi N; Padovani G; Biondi N; Bonini G; Tredici MR Biotechnol Bioeng; 2009 Jan; 102(1):100-12. PubMed ID: 18683258 [TBL] [Abstract][Full Text] [Related]
4. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Chen M; Tang H; Ma H; Holland TC; Ng KY; Salley SO Bioresour Technol; 2011 Jan; 102(2):1649-55. PubMed ID: 20947341 [TBL] [Abstract][Full Text] [Related]
5. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Msanne J; Xu D; Konda AR; Casas-Mollano JA; Awada T; Cahoon EB; Cerutti H Phytochemistry; 2012 Mar; 75():50-9. PubMed ID: 22226037 [TBL] [Abstract][Full Text] [Related]
6. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Feng D; Chen Z; Xue S; Zhang W Bioresour Technol; 2011 Jun; 102(12):6710-6. PubMed ID: 21524571 [TBL] [Abstract][Full Text] [Related]
7. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Pal D; Khozin-Goldberg I; Cohen Z; Boussiba S Appl Microbiol Biotechnol; 2011 May; 90(4):1429-41. PubMed ID: 21431397 [TBL] [Abstract][Full Text] [Related]
8. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus--a potential strain for bio-fuel production. George B; Pancha I; Desai C; Chokshi K; Paliwal C; Ghosh T; Mishra S Bioresour Technol; 2014 Nov; 171():367-74. PubMed ID: 25218209 [TBL] [Abstract][Full Text] [Related]
9. Efficient one-step production of astaxanthin by the microalga Haematococcus pluvialis in continuous culture. Del Río E; Acién FG; García-Malea MC; Rivas J; Molina-Grima E; Guerrero MG Biotechnol Bioeng; 2005 Sep; 91(7):808-15. PubMed ID: 15937954 [TBL] [Abstract][Full Text] [Related]
10. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Xin L; Hu HY; Ke G; Sun YX Bioresour Technol; 2010 Jul; 101(14):5494-500. PubMed ID: 20202827 [TBL] [Abstract][Full Text] [Related]
11. The dynamics of heterotrophic algal cultures. De la Hoz Siegler H; Ben-Zvi A; Burrell RE; McCaffrey WC Bioresour Technol; 2011 May; 102(10):5764-74. PubMed ID: 21377360 [TBL] [Abstract][Full Text] [Related]
12. Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: implications for biofuels. Yeh KL; Chang JS Biotechnol J; 2011 Nov; 6(11):1358-66. PubMed ID: 21381209 [TBL] [Abstract][Full Text] [Related]
13. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. da Silva TL; Reis A; Medeiros R; Oliveira AC; Gouveia L Appl Biochem Biotechnol; 2009 Nov; 159(2):568-78. PubMed ID: 19067244 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of filamentous green algae as feedstocks for biofuel production. Zhang W; Zhao Y; Cui B; Wang H; Liu T Bioresour Technol; 2016 Nov; 220():407-413. PubMed ID: 27598569 [TBL] [Abstract][Full Text] [Related]
16. Microalgae bulk growth model with application to industrial scale systems. Quinn J; de Winter L; Bradley T Bioresour Technol; 2011 Apr; 102(8):5083-92. PubMed ID: 21324679 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Li Y; Han D; Hu G; Sommerfeld M; Hu Q Biotechnol Bioeng; 2010 Oct; 107(2):258-68. PubMed ID: 20506159 [TBL] [Abstract][Full Text] [Related]
18. The feasibility of biodiesel production by microalgae using industrial wastewater. Wu LF; Chen PC; Huang AP; Lee CM Bioresour Technol; 2012 Jun; 113():14-8. PubMed ID: 22269054 [TBL] [Abstract][Full Text] [Related]
19. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Cheirsilp B; Torpee S Bioresour Technol; 2012 Apr; 110():510-6. PubMed ID: 22361073 [TBL] [Abstract][Full Text] [Related]