These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20619642)

  • 1. Effect of mass and charge transport speed and direction in porous anodes on microbial electrolysis cell performance.
    Sleutels TH; Hamelers HV; Buisman CJ
    Bioresour Technol; 2011 Jan; 102(1):399-403. PubMed ID: 20619642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes.
    Xu S; Liu H; Fan Y; Schaller R; Jiao J; Chaplen F
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):871-80. PubMed ID: 22080340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.
    Lacasa E; Cañizares P; Llanos J; Rodrigo MA
    J Hazard Mater; 2012 Apr; 213-214():478-84. PubMed ID: 22387000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells.
    Fan Y; Xu S; Schaller R; Jiao J; Chaplen F; Liu H
    Biosens Bioelectron; 2011 Jan; 26(5):1908-12. PubMed ID: 20542420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of biological hydrogen oxidation in a continuous single-chamber microbial electrolysis cell.
    Lee HS; Rittmann BE
    Environ Sci Technol; 2010 Feb; 44(3):948-54. PubMed ID: 20030379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of operational parameters on Coulombic efficiency in bioelectrochemical systems.
    Sleutels TH; Darus L; Hamelers HV; Buisman CJ
    Bioresour Technol; 2011 Dec; 102(24):11172-6. PubMed ID: 22004593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen consumption in microbial electrochemical systems (MXCs): the role of homo-acetogenic bacteria.
    Parameswaran P; Torres CI; Lee HS; Rittmann BE; Krajmalnik-Brown R
    Bioresour Technol; 2011 Jan; 102(1):263-71. PubMed ID: 20430615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High yield hydrogen production in a single-chamber membrane-less microbial electrolysis cell.
    Ye Y; Wang L; Chen Y; Zhu S; Shen S
    Water Sci Technol; 2010; 61(3):721-7. PubMed ID: 20150709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria.
    Torres CI; Kato Marcus A; Rittmann BE
    Biotechnol Bioeng; 2008 Aug; 100(5):872-81. PubMed ID: 18551519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.
    Liang DW; Peng SK; Lu SF; Liu YY; Lan F; Xiang Y
    Bioresour Technol; 2011 Dec; 102(23):10881-5. PubMed ID: 21974881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes.
    Aelterman P; Versichele M; Marzorati M; Boon N; Verstraete W
    Bioresour Technol; 2008 Dec; 99(18):8895-902. PubMed ID: 18524577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical effect on denitrification in different microenvironments around anodes and cathodes.
    Zhang LH; Jia JP; Ying DW; Zhu NW; Zhu YC
    Res Microbiol; 2005; 156(1):88-92. PubMed ID: 15636752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of flavin electron shuttles in microbial fuel cells current production.
    Velasquez-Orta SB; Head IM; Curtis TP; Scott K; Lloyd JR; von Canstein H
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1373-81. PubMed ID: 19697021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt.
    Li M; Feng C; Hu W; Zhang Z; Sugiura N
    J Hazard Mater; 2009 Feb; 162(1):455-62. PubMed ID: 18599203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater.
    Yi F; Chen S; Yuan C
    J Hazard Mater; 2008 Aug; 157(1):79-87. PubMed ID: 18258359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness.
    Jana PS; Katuri K; Kavanagh P; Kumar A; Leech D
    Phys Chem Chem Phys; 2014 May; 16(19):9039-46. PubMed ID: 24695860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.