BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20620034)

  • 1. Morphological changes of supported lipid bilayers induced by lysozyme: planar domain formation vs. multilayer stacking.
    Trusova VM; Gorbenko GP; Akopova I; Molotkovsky JG; Gryczynski I; Borejdo J; Gryczynski Z
    Colloids Surf B Biointerfaces; 2010 Oct; 80(2):219-26. PubMed ID: 20620034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c-lipid interactions: new insights from resonance energy transfer.
    Trusova VM; Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2010 Sep; 99(6):1754-63. PubMed ID: 20858419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye.
    Ioffe VM; Gorbenko GP; Tatarets AL; Patsenker LD; Terpechnig EA
    J Fluoresc; 2006 Jul; 16(4):547-54. PubMed ID: 16794868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracing lysozyme-lipid interactions with long-wavelength squaraine dyes.
    Ioffe VM; Gorbenko GP; Kinnunen PK; Tatarets AL; Kolosova OS; Patsenker LD; Terpetschnig EA
    J Fluoresc; 2007 Jan; 17(1):65-72. PubMed ID: 17192821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence study on aggregated lysozyme and lipid bilayer interactions.
    Trusova VM; Gorbenko GP
    J Photochem Photobiol B; 2012 Aug; 113():51-5. PubMed ID: 22652331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Förster resonance energy transfer evidence for lysozyme oligomerization in lipid environment.
    Trusova VM; Gorbenko GP; Sarkar P; Luchowski R; Akopova I; Patsenker LD; Klochko O; Tatarets AL; Kudriavtseva YO; Terpetschnig EA; Gryczynski I; Gryczynski Z
    J Phys Chem B; 2010 Dec; 114(50):16773-82. PubMed ID: 21126034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Förster Resonance Energy Transfer Study of Cytochrome c-Lipid Interactions.
    Gorbenko GP; Trusova V; Molotkovsky JG
    J Fluoresc; 2018 Jan; 28(1):79-88. PubMed ID: 28879486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific adsorption of cytochrome C on cardiolipin-glycerophospholipid monolayers and bilayers.
    Domènech O; Redondo L; Montero MT; Hernandez-Borrell J
    Langmuir; 2007 May; 23(10):5651-6. PubMed ID: 17419653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electric field-induced critical demixing in lipid bilayer membranes.
    Groves JT; Boxer SG; McConnell HM
    Proc Natl Acad Sci U S A; 1998 Feb; 95(3):935-8. PubMed ID: 9448263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiolipin Preferentially Partitions to the Inner Leaflet of Mixed Lipid Large Unilamellar Vesicles.
    Elmer-Dixon MM; Hoody J; Steele HBB; Becht DC; Bowler BE
    J Phys Chem B; 2019 Oct; 123(43):9111-9122. PubMed ID: 31589821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane.
    Domènech O; Sanz F; Montero MT; Hernández-Borrell J
    Biochim Biophys Acta; 2006 Feb; 1758(2):213-21. PubMed ID: 16556434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1.
    Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M
    Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome C interaction with cardiolipin/phosphatidylcholine model membranes: effect of cardiolipin protonation.
    Gorbenko GP; Molotkovsky JG; Kinnunen PK
    Biophys J; 2006 Jun; 90(11):4093-103. PubMed ID: 16565064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study.
    Gorbenko GP; Domanov YA
    Biophys Chem; 2003 Mar; 103(3):239-49. PubMed ID: 12727286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies.
    Ioffe V; Gorbenko GP
    Biophys Chem; 2005 Apr; 114(2-3):199-204. PubMed ID: 15829353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the bacterial UraA H+-uracil symporter in lipid bilayers reveal a closed state and a selective interaction with cardiolipin.
    Kalli AC; Sansom MS; Reithmeier RA
    PLoS Comput Biol; 2015 Mar; 11(3):e1004123. PubMed ID: 25729859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic force microscopy characterization of supported planar bilayers that mimic the mitochondrial inner membrane.
    Domènech O; Redondo L; Picas L; Morros A; Montero MT; Hernández-Borrell J
    J Mol Recognit; 2007; 20(6):546-53. PubMed ID: 17907278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the interaction of pig muscle lactate dehydrogenase with acidic phospholipids at low pH.
    Terlecki G; Czapiñska E; Rogozik K; Lisowski M; Gutowicz J
    Biochim Biophys Acta; 2006 Feb; 1758(2):133-44. PubMed ID: 16650378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.
    Michanek A; Kristen N; Höök F; Nylander T; Sparr E
    Biochim Biophys Acta; 2010 Apr; 1798(4):829-38. PubMed ID: 20036213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological changes induced by the action of antimicrobial peptides on supported lipid bilayers.
    Arouri A; Kiessling V; Tamm L; Dathe M; Blume A
    J Phys Chem B; 2011 Jan; 115(1):158-67. PubMed ID: 21158379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.