BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 20620093)

  • 1. Virtual topological optimisation of scaffolds for rapid prototyping.
    Almeida Hde A; Bártolo PJ
    Med Eng Phys; 2010 Sep; 32(7):775-82. PubMed ID: 20620093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review of rapid prototyping techniques for tissue engineering purposes.
    Peltola SM; Melchels FP; Grijpma DW; Kellomäki M
    Ann Med; 2008; 40(4):268-80. PubMed ID: 18428020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Current progress of fabricating tissue engineering scaffold using rapid prototyping techniques].
    Li X; Wang C
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1321-6. PubMed ID: 18998530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstereolithography-based computer-aided manufacturing for tissue engineering.
    Cho DW; Kang HW
    Methods Mol Biol; 2012; 868():341-56. PubMed ID: 22692621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffolds for tissue engineering and 3D cell culture.
    Carletti E; Motta A; Migliaresi C
    Methods Mol Biol; 2011; 695():17-39. PubMed ID: 21042963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds.
    Sudarmadji N; Chua CK; Leong KF
    Methods Mol Biol; 2012; 868():111-23. PubMed ID: 22692607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering.
    Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y
    Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Development of computer aided forming techniques in manufacturing scaffolds for bone tissue engineering].
    Wei X; Dong F
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Dec; 25(12):1508-12. PubMed ID: 22242356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design variables for mechanical properties of bone tissue scaffolds.
    Howk D; Chu TM
    Biomed Sci Instrum; 2006; 42():278-83. PubMed ID: 16817621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and vascular analysis of tissue engineering scaffolds, Part 1: Numerical fluid analysis.
    Almeida HA; Bártolo PJ
    Methods Mol Biol; 2012; 868():183-207. PubMed ID: 22692612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds.
    Sudarmadji N; Tan JY; Leong KF; Chua CK; Loh YT
    Acta Biomater; 2011 Feb; 7(2):530-7. PubMed ID: 20883840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional plotter technology for fabricating polymeric scaffolds with micro-grooved surfaces.
    Son J; Kim G
    J Biomater Sci Polym Ed; 2009; 20(14):2089-101. PubMed ID: 19874679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineered tissue scaffolds with variational porous architecture.
    Khoda AK; Ozbolat IT; Koc B
    J Biomech Eng; 2011 Jan; 133(1):011001. PubMed ID: 21186891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.
    Yoo D
    Med Eng Phys; 2012 Jul; 34(6):762-76. PubMed ID: 22721938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering.
    Baudis S; Nehl F; Ligon SC; Nigisch A; Bergmeister H; Bernhard D; Stampfl J; Liska R
    Biomed Mater; 2011 Oct; 6(5):055003. PubMed ID: 21849722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porous scaffold design for tissue engineering.
    Hollister SJ
    Nat Mater; 2005 Jul; 4(7):518-24. PubMed ID: 16003400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryogenic prototyping of chitosan scaffolds with controlled micro and macro architecture and their effect on in vivo neo-vascularization and cellular infiltration.
    Lim TC; Chian KS; Leong KF
    J Biomed Mater Res A; 2010 Sep; 94(4):1303-11. PubMed ID: 20694998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering.
    Yeong WY; Sudarmadji N; Yu HY; Chua CK; Leong KF; Venkatraman SS; Boey YC; Tan LP
    Acta Biomater; 2010 Jun; 6(6):2028-34. PubMed ID: 20026436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.