BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 20620959)

  • 41. Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence.
    Berezikov E; Robine N; Samsonova A; Westholm JO; Naqvi A; Hung JH; Okamura K; Dai Q; Bortolamiol-Becet D; Martin R; Zhao Y; Zamore PD; Hannon GJ; Marra MA; Weng Z; Perrimon N; Lai EC
    Genome Res; 2011 Feb; 21(2):203-15. PubMed ID: 21177969
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Drosha promotes splicing of a pre-microRNA-like alternative exon.
    Havens MA; Reich AA; Hastings ML
    PLoS Genet; 2014 May; 10(5):e1004312. PubMed ID: 24786770
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hierarchical rules for Argonaute loading in Drosophila.
    Czech B; Zhou R; Erlich Y; Brennecke J; Binari R; Villalta C; Gordon A; Perrimon N; Hannon GJ
    Mol Cell; 2009 Nov; 36(3):445-56. PubMed ID: 19917252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intron Lariat RNA Inhibits MicroRNA Biogenesis by Sequestering the Dicing Complex in Arabidopsis.
    Li Z; Wang S; Cheng J; Su C; Zhong S; Liu Q; Fang Y; Yu Y; Lv H; Zheng Y; Zheng B
    PLoS Genet; 2016 Nov; 12(11):e1006422. PubMed ID: 27870853
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Argonaute-mediated translational repression (and activation).
    Iwasaki S; Tomari Y
    Fly (Austin); 2009; 3(3):204-6. PubMed ID: 19556851
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Structure-function analysis of microRNA 3'-end trimming by Nibbler.
    Xie W; Sowemimo I; Hayashi R; Wang J; Burkard TR; Brennecke J; Ameres SL; Patel DJ
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30370-30379. PubMed ID: 33199607
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs.
    Smibert P; Bejarano F; Wang D; Garaulet DL; Yang JS; Martin R; Bortolamiol-Becet D; Robine N; Hiesinger PR; Lai EC
    RNA; 2011 Nov; 17(11):1997-2010. PubMed ID: 21947201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs.
    Okamura K; Chung WJ; Lai EC
    Cell Cycle; 2008 Sep; 7(18):2840-5. PubMed ID: 18769156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of mirtrons in rice using MirtronPred: a tool for predicting plant mirtrons.
    Joshi PK; Gupta D; Nandal UK; Khan Y; Mukherjee SK; Sanan-Mishra N
    Genomics; 2012 Jun; 99(6):370-5. PubMed ID: 22546559
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Distinguishing mirtrons from canonical miRNAs with data exploration and machine learning methods.
    Rorbach G; Unold O; Konopka BM
    Sci Rep; 2018 May; 8(1):7560. PubMed ID: 29765080
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide identification of zero nucleotide recursive splicing in Drosophila.
    Duff MO; Olson S; Wei X; Garrett SC; Osman A; Bolisetty M; Plocik A; Celniker SE; Graveley BR
    Nature; 2015 May; 521(7552):376-9. PubMed ID: 25970244
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells.
    Saito K; Ishizuka A; Siomi H; Siomi MC
    PLoS Biol; 2005 Jul; 3(7):e235. PubMed ID: 15918769
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes.
    Valen E; Preker P; Andersen PR; Zhao X; Chen Y; Ender C; Dueck A; Meister G; Sandelin A; Jensen TH
    Nat Struct Mol Biol; 2011 Aug; 18(9):1075-82. PubMed ID: 21822281
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular mechanisms that funnel RNA precursors into endogenous small-interfering RNA and microRNA biogenesis pathways in Drosophila.
    Miyoshi K; Miyoshi T; Hartig JV; Siomi H; Siomi MC
    RNA; 2010 Mar; 16(3):506-15. PubMed ID: 20086050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants.
    Yang JS; Lai EC
    Mol Cell; 2011 Sep; 43(6):892-903. PubMed ID: 21925378
    [TBL] [Abstract][Full Text] [Related]  

  • 56. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes.
    Behm-Ansmant I; Rehwinkel J; Doerks T; Stark A; Bork P; Izaurralde E
    Genes Dev; 2006 Jul; 20(14):1885-98. PubMed ID: 16815998
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deadenylation is a widespread effect of miRNA regulation.
    Eulalio A; Huntzinger E; Nishihara T; Rehwinkel J; Fauser M; Izaurralde E
    RNA; 2009 Jan; 15(1):21-32. PubMed ID: 19029310
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mirtrons, an emerging class of atypical miRNA.
    Curtis HJ; Sibley CR; Wood MJ
    Wiley Interdiscip Rev RNA; 2012; 3(5):617-32. PubMed ID: 22733569
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates.
    Yang JS; Lai EC
    Cell Cycle; 2010 Nov; 9(22):4455-60. PubMed ID: 21088485
    [TBL] [Abstract][Full Text] [Related]  

  • 60. And now introducing mammalian mirtrons.
    Chan SP; Slack FJ
    Dev Cell; 2007 Nov; 13(5):605-607. PubMed ID: 17981129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.