BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 20620992)

  • 1. SNARE conformational changes that prepare vesicles for exocytosis.
    Takahashi N; Hatakeyama H; Okado H; Noguchi J; Ohno M; Kasai H
    Cell Metab; 2010 Jul; 12(1):19-29. PubMed ID: 20620992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Syntaxin 2 Acts as Inhibitory SNARE for Insulin Granule Exocytosis.
    Zhu D; Xie L; Kang Y; Dolai S; Bondo Hansen J; Qin T; Xie H; Liang T; Rubin DC; Osborne L; Gaisano HY
    Diabetes; 2017 Apr; 66(4):948-959. PubMed ID: 28115395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dance of the SNAREs: assembly and rearrangements detected with FRET at neuronal synapses.
    Degtyar V; Hafez IM; Bray C; Zucker RS
    J Neurosci; 2013 Mar; 33(13):5507-23. PubMed ID: 23536066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Munc 18-1 and granuphilin collaborate during insulin granule exocytosis.
    Tomas A; Meda P; Regazzi R; Pessin JE; Halban PA
    Traffic; 2008 May; 9(5):813-32. PubMed ID: 18208509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting of voltage-gated K+ and Ca2+ channels and soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins to cholesterol-rich lipid rafts in pancreatic alpha-cells: effects on glucagon stimulus-secretion coupling.
    Xia F; Leung YM; Gaisano G; Gao X; Chen Y; Fox JE; Bhattacharjee A; Wheeler MB; Gaisano HY; Tsushima RG
    Endocrinology; 2007 May; 148(5):2157-67. PubMed ID: 17303668
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Snapin mediates insulin secretory granule docking, but not trans-SNARE complex formation.
    Somanath S; Partridge CJ; Marshall C; Rowe T; Turner MD
    Biochem Biophys Res Commun; 2016 Apr; 473(2):403-7. PubMed ID: 26946359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent new insights into the role of SNARE and associated proteins in insulin granule exocytosis.
    Gaisano HY
    Diabetes Obes Metab; 2017 Sep; 19 Suppl 1():115-123. PubMed ID: 28880475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis.
    Cheviet S; Bezzi P; Ivarsson R; Renström E; Viertl D; Kasas S; Catsicas S; Regazzi R
    J Cell Sci; 2006 Jul; 119(Pt 14):2912-20. PubMed ID: 16787939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracking Ca2+-dependent and Ca2+-independent conformational transitions in syntaxin 1A during exocytosis in neuroendocrine cells.
    Greitzer-Antes D; Barak-Broner N; Berlin S; Oron Y; Chikvashvili D; Lotan I
    J Cell Sci; 2013 Jul; 126(Pt 13):2914-23. PubMed ID: 23641074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody inhibition of synaptosomal protein of 25 kDa (SNAP-25) and syntaxin 1 reduces rapid exocytosis in insulin-secreting cells.
    Vikman J; Ma X; Hockerman GH; Rorsman P; Eliasson L
    J Mol Endocrinol; 2006 Jun; 36(3):503-15. PubMed ID: 16720719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion.
    Bhalla A; Chicka MC; Tucker WC; Chapman ER
    Nat Struct Mol Biol; 2006 Apr; 13(4):323-30. PubMed ID: 16565726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles.
    Sørensen JB; Wiederhold K; Müller EM; Milosevic I; Nagy G; de Groot BL; Grubmüller H; Fasshauer D
    EMBO J; 2006 Mar; 25(5):955-66. PubMed ID: 16498411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells.
    Takahashi N; Sawada W; Noguchi J; Watanabe S; Ucar H; Hayashi-Takagi A; Yagishita S; Ohno M; Tokumaru H; Kasai H
    Nat Commun; 2015 Oct; 6():8531. PubMed ID: 26439845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptobrevin N-terminally bound to syntaxin-SNAP-25 defines the primed vesicle state in regulated exocytosis.
    Walter AM; Wiederhold K; Bruns D; Fasshauer D; Sørensen JB
    J Cell Biol; 2010 Feb; 188(3):401-13. PubMed ID: 20142423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose-dependent changes in SNARE protein levels in pancreatic β-cells.
    Torrejón-Escribano B; Escoriza J; Montanya E; Blasi J
    Endocrinology; 2011 Apr; 152(4):1290-9. PubMed ID: 21285315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assays to measure SNARE-mediated vesicle fusion.
    Kreye S; Malsam J; Söllner TH
    Methods Mol Biol; 2008; 440():37-50. PubMed ID: 18369935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging exocytosis of single insulin secretory granules with TIRF microscopy.
    Nagamatsu S; Ohara-Imaizumi M
    Methods Mol Biol; 2008; 440():259-68. PubMed ID: 18369952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct initial SNARE configurations underlying the diversity of exocytosis.
    Kasai H; Takahashi N; Tokumaru H
    Physiol Rev; 2012 Oct; 92(4):1915-64. PubMed ID: 23073634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
    Meng J; Wang J; Lawrence G; Dolly JO
    J Cell Sci; 2007 Aug; 120(Pt 16):2864-74. PubMed ID: 17666428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. G protein betagamma directly regulates SNARE protein fusion machinery for secretory granule exocytosis.
    Blackmer T; Larsen EC; Bartleson C; Kowalchyk JA; Yoon EJ; Preininger AM; Alford S; Hamm HE; Martin TF
    Nat Neurosci; 2005 Apr; 8(4):421-5. PubMed ID: 15778713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.