BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20621024)

  • 1. Effect of surface treatments on the fatigue life of titanium for biomedical applications.
    Pazos L; Corengia P; Svoboda H
    J Mech Behav Biomed Mater; 2010 Aug; 3(6):416-24. PubMed ID: 20621024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the height of the external hexagon and surface treatment on fatigue life of commercially pure titanium dental implants.
    Gil FJ; Aparicio C; Manero JM; Padros A
    Int J Oral Maxillofac Implants; 2009; 24(4):583-90. PubMed ID: 19885397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of shot blasting and heat treatment on the fatigue behavior of titanium for dental implant applications.
    Javier Gil F; Planell JA; Padrós A; Aparicio C
    Dent Mater; 2007 Apr; 23(4):486-91. PubMed ID: 16620949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of oxidation treatment on fatigue and fatigue-induced damage of commercially pure titanium.
    Leinenbach C; Eifler D
    Acta Biomater; 2009 Sep; 5(7):2810-9. PubMed ID: 19394905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface roughness and fatigue performance of commercially pure titanium and Ti-6Al-4V alloy after different polishing protocols.
    Guilherme AS; Henriques GE; Zavanelli RA; Mesquita MF
    J Prosthet Dent; 2005 Apr; 93(4):378-85. PubMed ID: 15798689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A; Wang CJ; Kelly J; Gubbi P; Nishimura I
    Int J Oral Maxillofac Implants; 2009; 24(5):808-16. PubMed ID: 19865620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-conducting properties of titanium dioxide surfaces on titanium implants.
    Petersson IU; Löberg JE; Fredriksson AS; Ahlberg EK
    Biomaterials; 2009 Sep; 30(27):4471-9. PubMed ID: 19524291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro and in vivo evaluation of bioactive titanium implants following sodium removal treatment.
    Fawzy AS; Amer MA
    Dent Mater; 2009 Jan; 25(1):48-57. PubMed ID: 18585776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media.
    Leinenbach C; Eifler D
    Biomaterials; 2006 Mar; 27(8):1200-8. PubMed ID: 16140373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A histomorphometric analysis of the effects of various surface treatment methods on osseointegration.
    Kim YH; Koak JY; Chang IT; Wennerberg A; Heo SJ
    Int J Oral Maxillofac Implants; 2003; 18(3):349-56. PubMed ID: 12814309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of supramicron roughness characteristics produced by 1- and 2-step acid etching on the osseointegration capability of titanium.
    Att W; Tsukimura N; Suzuki T; Ogawa T
    Int J Oral Maxillofac Implants; 2007; 22(5):719-28. PubMed ID: 17974105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical assessment of grit blasting surface treatments of dental implants.
    Shemtov-Yona K; Rittel D; Dorogoy A
    J Mech Behav Biomed Mater; 2014 Nov; 39():375-90. PubMed ID: 25173238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of bulk microstructure of commercially pure titanium on surface characteristics and fatigue properties after surface modification by sand blasting and acid-etching.
    Medvedev AE; Ng HP; Lapovok R; Estrin Y; Lowe TC; Anumalasetty VN
    J Mech Behav Biomed Mater; 2016 Apr; 57():55-68. PubMed ID: 26703365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs.
    Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W
    Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of grade and surface topography of commercially pure titanium on fatigue properties.
    Suzuki K; Takano T; Takemoto S; Ueda T; Yoshinari M; Sakurai K
    Dent Mater J; 2018 Mar; 37(2):308-316. PubMed ID: 28954943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control.
    Niinomi M; Akahori T
    Expert Rev Med Devices; 2010 Jul; 7(4):481-8. PubMed ID: 20583885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of surface topology on the osseointegration of implant materials in trabecular bone.
    Wong M; Eulenberger J; Schenk R; Hunziker E
    J Biomed Mater Res; 1995 Dec; 29(12):1567-75. PubMed ID: 8600147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between surface properties (roughness, wettability and morphology) of titanium and dental implant removal torque.
    Elias CN; Oshida Y; Lima JH; Muller CA
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):234-42. PubMed ID: 19627788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a predictive model for implant surface topography effects on early osseointegration in the rat tibia model.
    Abron A; Hopfensperger M; Thompson J; Cooper LF
    J Prosthet Dent; 2001 Jan; 85(1):40-6. PubMed ID: 11174677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of precoating surface treatments on fatigue of Ti-6A1-4V.
    Eberhardt AW; Kim BS; Rigney ED; Kutner GL; Harte CR
    J Appl Biomater; 1995; 6(3):171-4. PubMed ID: 7492807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.