BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 20621024)

  • 21. Fracture and fatigue behavior of shot-blasted titanium dental implants.
    Gil FJ; Planell JA; Padrós A
    Implant Dent; 2002; 11(1):28-32. PubMed ID: 11915542
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical biocompatibilities of titanium alloys for biomedical applications.
    Niinomi M
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):30-42. PubMed ID: 19627769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of surface treatment on bond strength of low-fusing porcelain to commercially pure titanium.
    Al Hussaini I; Al Wazzan KA
    J Prosthet Dent; 2005 Oct; 94(4):350-6. PubMed ID: 16198172
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of loading frequency on implant failure under cyclic fatigue conditions.
    Karl M; Kelly JR
    Dent Mater; 2009 Nov; 25(11):1426-32. PubMed ID: 19643468
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fatigue life of bioactive titanium dental implants treated by means of grit-blasting and thermo-chemical treatment.
    Gil FJ; Espinar E; Llamas JM; Sevilla P
    Clin Implant Dent Relat Res; 2014 Apr; 16(2):273-81. PubMed ID: 24766392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fatigue behavior of thin-walled grade 2 titanium samples processed by selective laser melting. Application to life prediction of porous titanium implants.
    Lipinski P; Barbas A; Bonnet AS
    J Mech Behav Biomed Mater; 2013 Dec; 28():274-90. PubMed ID: 24008139
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Osseointegration of titanium implants with a roughened surface containing hydride ion in a rabbit model.
    Cheng Z; Zhang F; He F; Zhang L; Guo C; Zhao S; Yang G
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Jul; 110(1):e5-12. PubMed ID: 20610295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties.
    Lieblich M; Barriuso S; Multigner M; González-Doncel G; González-Carrasco JL
    J Mech Behav Biomed Mater; 2016 Feb; 54():173-84. PubMed ID: 26458115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of laser etching on shear bond strength at the titanium ceramic interface.
    Kim JT; Cho SA
    J Prosthet Dent; 2009 Feb; 101(2):101-6. PubMed ID: 19167534
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influences of electrical potential and surface finish on the fatigue life of surgical implant materials.
    Bapna MS; Lautenschlager EP; Moser JB
    J Biomed Mater Res; 1975 Nov; 9(6):611-21. PubMed ID: 1184609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur.
    Park JW; Kim HK; Kim YJ; An CH; Hanawa T
    Clin Oral Implants Res; 2009 Jul; 20(7):684-90. PubMed ID: 19489932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Observation of topography and analysis of surface contamination of titanium implant after roughness treatment].
    Cao H; Yang X; Wu D; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):372-5. PubMed ID: 17591263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bone response to a pure titanium implant surface modified by laser etching and microarc oxidation.
    Guo Z; Zhou L; Rong M; Zhu A; Geng H
    Int J Oral Maxillofac Implants; 2010; 25(1):130-6. PubMed ID: 20209195
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Importance of the Roughness and Residual Stresses of Dental Implants on Fatigue and Osseointegration Behavior. In Vivo Study in Rabbits.
    Velasco E; Monsalve-Guil L; Jimenez A; Ortiz I; Moreno-Muñoz J; Nuñez-Marquez E; Pegueroles M; Pérez RA; Gil FJ
    J Oral Implantol; 2016 Dec; 42(6):469-476. PubMed ID: 27589397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface analysis of machined versus sandblasted and acid-etched titanium implants.
    Orsini G; Assenza B; Scarano A; Piattelli M; Piattelli A
    Int J Oral Maxillofac Implants; 2000; 15(6):779-84. PubMed ID: 11151575
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatigue behavior of Ti6Al4V and 316 LVM blasted with ceramic particles of interest for medical devices.
    Barriuso S; Chao J; Jiménez JA; García S; González-Carrasco JL
    J Mech Behav Biomed Mater; 2014 Feb; 30():30-40. PubMed ID: 24216310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interface interactions of osteoblasts with structured titanium and the correlation between physicochemical characteristics and cell biological parameters.
    Nebe JG; Luethen F; Lange R; Beck U
    Macromol Biosci; 2007 May; 7(5):567-78. PubMed ID: 17457937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Titanium hydride and hydrogen concentration in acid-etched commercially pure titanium and titanium alloy implants: a comparative analysis of five implant systems.
    Szmukler-Moncler S; Bischof M; Nedir R; Ermrich M
    Clin Oral Implants Res; 2010 Sep; 21(9):944-50. PubMed ID: 20465551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials.
    Ahmadi SM; Kumar R; Borisov EV; Petrov R; Leeflang S; Li Y; Tümer N; Huizenga R; Ayas C; Zadpoor AA; Popovich VA
    Acta Biomater; 2019 Jan; 83():153-166. PubMed ID: 30389577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A parametric study of the factors affecting the fatigue strength of porous coated Ti-6A1-4V implant alloy.
    Kohn DH; Ducheyne P
    J Biomed Mater Res; 1990 Nov; 24(11):1483-501. PubMed ID: 2279982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.