These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2062106)

  • 1. Biochemical systems theory: increasing predictive power by using second-order derivatives measurements.
    Cascante M; Sorribas A; Franco R; Canela EI
    J Theor Biol; 1991 Apr; 149(4):521-35. PubMed ID: 2062106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of alternative representations for integrated biochemical systems.
    Voit EO; Savageau MA
    Biochemistry; 1987 Oct; 26(21):6869-80. PubMed ID: 3427048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strategies for representing metabolic pathways within biochemical systems theory: reversible pathways.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):239-69. PubMed ID: 2520170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical systems theory: operational differences among variant representations and their significance.
    Savageau MA
    J Theor Biol; 1991 Aug; 151(4):509-30. PubMed ID: 1943154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A second-order approach to metabolic control analysis.
    Höfer T; Heinrich R
    J Theor Biol; 1993 Sep; 164(1):85-102. PubMed ID: 8264245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of variant theories of intact biochemical systems. II. Flux-oriented and metabolic control theories.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):195-238. PubMed ID: 2520169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of variant theories of intact biochemical systems. I. Enzyme-enzyme interactions and biochemical systems theory.
    Sorribas A; Savageau MA
    Math Biosci; 1989 Jun; 94(2):161-93. PubMed ID: 2520168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Power-law modeling based on least-squares minimization criteria.
    Hernández-Bermejo B; Fairén V; Sorribas A
    Math Biosci; 1999 Oct; 161(1-2):83-94. PubMed ID: 10546442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical sensitivities: a useful tool to deal with large perturbations in metabolic network modeling.
    Guebel DV
    In Silico Biol; 2004; 4(2):163-82. PubMed ID: 15107021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Power-law modeling based on least-squares criteria: consequences for system analysis and simulation.
    Hernández-Bermejo B; Fairén V; Sorribas A
    Math Biosci; 2000 Oct; 167(2):87-107. PubMed ID: 10998483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematics of organizationally complex systems.
    Savageau MA
    Biomed Biochim Acta; 1985; 44(6):839-44. PubMed ID: 4038284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The tricarboxylic acid cycle in Dictyostelium discoideum. I. Formulation of alternative kinetic representations.
    Shiraishi F; Savageau MA
    J Biol Chem; 1992 Nov; 267(32):22912-8. PubMed ID: 1429641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergism analysis of biochemical systems. I. Conceptual framework.
    Salvador A
    Math Biosci; 2000 Feb; 163(2):105-29. PubMed ID: 10701301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative characterization of the fermentation pathway of Saccharomyces cerevisiae using biochemical systems theory and metabolic control analysis: model definition and nomenclature.
    Curto R; Sorribas A; Cascante M
    Math Biosci; 1995 Nov; 130(1):25-50. PubMed ID: 7579901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic metabolic control theory. A methodology for investigating metabolic regulation using transient metabolic data.
    Liao JC; Delgado J
    Ann N Y Acad Sci; 1992 Oct; 665():27-38. PubMed ID: 1416609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical reaction network approaches to Biochemical Systems Theory.
    Arceo CP; Jose EC; Marin-Sanguino A; Mendoza ER
    Math Biosci; 2015 Nov; 269():135-52. PubMed ID: 26363083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and highly accurate numerical differentiation method for sensitivity analysis of large-scale metabolic reaction systems.
    Shiraishi F; Furuta S; Ishimatsu T; Akhter J
    Math Biosci; 2007 Aug; 208(2):590-606. PubMed ID: 17303189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of an S-system root-finding method for estimating parameters in a metabolic reaction model.
    Iwata M; Miyawaki-Kuwakado A; Yoshida E; Komori S; Shiraishi F
    Math Biosci; 2018 Jul; 301():21-31. PubMed ID: 29410225
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.