BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 20621096)

  • 1. Deletion of Swm2p selectively impairs trimethylation of snRNAs by trimethylguanosine synthase (Tgs1p).
    Boon KL; Kos M
    FEBS Lett; 2010 Aug; 584(15):3299-304. PubMed ID: 20621096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-association of Trimethylguanosine Synthase Tgs1 is required for efficient snRNA/snoRNA trimethylation and pre-rRNA processing.
    Boon KL; Pearson MD; Koš M
    Sci Rep; 2015 Jun; 5():11282. PubMed ID: 26074133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus.
    Mouaikel J; Verheggen C; Bertrand E; Tazi J; Bordonné R
    Mol Cell; 2002 Apr; 9(4):891-901. PubMed ID: 11983179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology.
    Colau G; Thiry M; Leduc V; Bordonné R; Lafontaine DL
    Mol Cell Biol; 2004 Sep; 24(18):7976-86. PubMed ID: 15340060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esf2p, a U3-associated factor required for small-subunit processome assembly and compaction.
    Hoang T; Peng WT; Vanrobays E; Krogan N; Hiley S; Beyer AL; Osheim YN; Greenblatt J; Hughes TR; Lafontaine DL
    Mol Cell Biol; 2005 Jul; 25(13):5523-34. PubMed ID: 15964808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase.
    Mouaikel J; Bujnicki JM; Tazi J; Bordonné R
    Nucleic Acids Res; 2003 Aug; 31(16):4899-909. PubMed ID: 12907733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The position of yeast snoRNA-coding regions within host introns is essential for their biosynthesis and for efficient splicing of the host pre-mRNA.
    Vincenti S; De Chiara V; Bozzoni I; Presutti C
    RNA; 2007 Jan; 13(1):138-50. PubMed ID: 17135484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct interaction between Utp8p and Utp9p contributes to rRNA processing in budding yeast.
    Huang YC; Tseng SF; Tsai HJ; Lenzmeier BA; Teng SC
    Biochem Biophys Res Commun; 2010 Mar; 393(2):297-302. PubMed ID: 20138832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utp25p, a nucleolar Saccharomyces cerevisiae protein, interacts with U3 snoRNP subunits and affects processing of the 35S pre-rRNA.
    Goldfeder MB; Oliveira CC
    FEBS J; 2010 Jul; 277(13):2838-52. PubMed ID: 20528918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypermethylation of yeast telomerase RNA by the snRNA and snoRNA methyltransferase Tgs1.
    Franke J; Gehlen J; Ehrenhofer-Murray AE
    J Cell Sci; 2008 Nov; 121(Pt 21):3553-60. PubMed ID: 18840651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes.
    Borovjagin AV; Gerbi SA
    J Mol Biol; 1999 Mar; 286(5):1347-63. PubMed ID: 10064702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in the nucleolar proteins Tma23 and Nop6 suppress the malfunction of the Nep1 protein.
    Buchhaupt M; Kötter P; Entian KD
    FEMS Yeast Res; 2007 Sep; 7(6):771-81. PubMed ID: 17425675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Guided tours: from precursor snoRNA to functional snoRNP.
    Weinstein LB; Steitz JA
    Curr Opin Cell Biol; 1999 Jun; 11(3):378-84. PubMed ID: 10395551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel trypanosomatid small nucleolar RNAs that guide methylation: their genome organization, expression and potential use to direct specific methylation on target RNA molecules.
    Xu YX; Liu L; Michaeli S
    Isr Med Assoc J; 2000 Jul; 2 Suppl():58-62. PubMed ID: 10909419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism.
    Chanfreau G; Legrain P; Jacquier A
    J Mol Biol; 1998 Dec; 284(4):975-88. PubMed ID: 9837720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Processing of the intron-encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA.
    Caffarelli E; Fatica A; Prislei S; De Gregorio E; Fragapane P; Bozzoni I
    EMBO J; 1996 Mar; 15(5):1121-31. PubMed ID: 8605882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pti1p and Ref2p found in association with the mRNA 3' end formation complex direct snoRNA maturation.
    Dheur S; Vo le TA; Voisinet-Hakil F; Minet M; Schmitter JM; Lacroute F; Wyers F; Minvielle-Sebastia L
    EMBO J; 2003 Jun; 22(11):2831-40. PubMed ID: 12773397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel snoRNA can direct site-specific 2'-O-ribose methylation of snRNAs in Oryza sativa.
    Li W; Jiang G; Huang B; Jin Y
    IUBMB Life; 2005 Mar; 57(3):173-9. PubMed ID: 16036579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Putative RNA Helicase Dbp4p Is Required for Release of the U14 snoRNA from Preribosomes in Saccharomyces cerevisiae.
    Kos M; Tollervey D
    Mol Cell; 2005 Oct; 20(1):53-64. PubMed ID: 16209945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common maturation pathway for small nucleolar RNAs.
    Terns MP; Grimm C; Lund E; Dahlberg JE
    EMBO J; 1995 Oct; 14(19):4860-71. PubMed ID: 7588615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.