These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 2062112)

  • 1. Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey.
    Mountcastle VB; Reitboeck HJ; Poggio GF; Steinmetz MA
    J Neurosci Methods; 1991 Jan; 36(1):77-84. PubMed ID: 2062112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-channel, implantable microdrive system for use with sharp, ultra-fine "Reitboeck" microelectrodes.
    Swadlow HA; Bereshpolova Y; Bezdudnaya T; Cano M; Stoelzel CR
    J Neurophysiol; 2005 May; 93(5):2959-65. PubMed ID: 15601730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quality of neuronal signal registered in the monkey motor cortex with chronically implanted multiple microwires].
    Bondar' IV; Vasil'eva LN; Badakva AM; Miller NV; Zobova LN; Roshchin VIu
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2014; 64(1):101-12. PubMed ID: 25710068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice.
    Yang S; Cho J; Lee S; Park K; Kim J; Huh Y; Yoon ES; Shin HS
    J Neurosci Methods; 2011 Feb; 195(2):117-27. PubMed ID: 20868709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Procedure for recording the simultaneous activity of single neurons distributed across cortical areas during sensory discrimination.
    Hernández A; Nácher V; Luna R; Alvarez M; Zainos A; Cordero S; Camarillo L; Vázquez Y; Lemus L; Romo R
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16785-90. PubMed ID: 18946031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A screw microdrive for adjustable chronic unit recording in monkeys.
    Nichols AM; Ruffner TW; Sommer MA; Wurtz RH
    J Neurosci Methods; 1998 Jun; 81(1-2):185-8. PubMed ID: 9696324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats.
    Haiss F; Butovas S; Schwarz C
    J Neurosci Methods; 2010 Mar; 187(1):67-72. PubMed ID: 20036690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel system for recording from single neurons in unrestrained animals.
    Sherk H; Wilkinson EJ
    J Neurosci Methods; 2008 Aug; 173(2):201-7. PubMed ID: 18619491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new multi-electrode array design for chronic neural recording, with independent and automatic hydraulic positioning.
    Sato T; Suzuki T; Mabuchi K
    J Neurosci Methods; 2007 Feb; 160(1):45-51. PubMed ID: 16996616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to record changes in local neuronal discharge in response to infusion of small drug quantities in awake monkeys.
    Kliem MA; Wichmann T
    J Neurosci Methods; 2004 Sep; 138(1-2):45-9. PubMed ID: 15325110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Large-Scale Semi-Chronic Microdrive Recording System for Non-Human Primates.
    Dotson NM; Hoffman SJ; Goodell B; Gray CM
    Neuron; 2017 Nov; 96(4):769-782.e2. PubMed ID: 29107523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microdrive for use with glass or metal microelectrodes in recording from freely-moving rats.
    Deadwyler SA; Biela J; Rose G; West M; Lynch G
    Electroencephalogr Clin Neurophysiol; 1979 Dec; 47(6):752-4. PubMed ID: 91506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing cardiac action potentials recorded with metal and glass microelectrodes.
    Omichi C; Lee MH; Ohara T; Naik AM; Wang NC; Karagueuzian HS; Chen PS
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H3113-7. PubMed ID: 11087269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates.
    Jackson A; Fetz EE
    J Neurophysiol; 2007 Nov; 98(5):3109-18. PubMed ID: 17855584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain.
    Santos L; Opris I; Fuqua J; Hampson RE; Deadwyler SA
    J Neurosci Methods; 2012 Apr; 205(2):368-74. PubMed ID: 22326226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multiwire microelectrode for single unit recording in deep brain structures.
    Jaeger D; Gilman S; Aldridge JW
    J Neurosci Methods; 1990 May; 32(2):143-8. PubMed ID: 2114505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantable computer-controlled adaptive multielectrode positioning system.
    Ferrea E; Suriya-Arunroj L; Hoehl D; Thomas U; Gail A
    J Neurophysiol; 2018 Apr; 119(4):1471-1484. PubMed ID: 29187552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A method for recording single-cell activity in the frontal-pole cortex of macaque monkeys.
    Mitz AR; Tsujimoto S; Maclarty AJ; Wise SP
    J Neurosci Methods; 2009 Feb; 177(1):60-6. PubMed ID: 18977387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.