These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 20621404)

  • 1. Release of silver nanoparticles from outdoor facades.
    Kaegi R; Sinnet B; Zuleeg S; Hagendorfer H; Mueller E; Vonbank R; Boller M; Burkhardt M
    Environ Pollut; 2010 Sep; 158(9):2900-5. PubMed ID: 20621404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment.
    Kaegi R; Ulrich A; Sinnet B; Vonbank R; Wichser A; Zuleeg S; Simmler H; Brunner S; Vonmont H; Burkhardt M; Boller M
    Environ Pollut; 2008 Nov; 156(2):233-9. PubMed ID: 18824285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release and environmental impact of silver nanoparticles and conventional organic biocides from coated wooden façades.
    Künniger T; Gerecke AC; Ulrich A; Huch A; Vonbank R; Heeb M; Wichser A; Haag R; Kunz P; Faller M
    Environ Pollut; 2014 Jan; 184():464-71. PubMed ID: 24121422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos.
    Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S
    Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant.
    Kaegi R; Voegelin A; Sinnet B; Zuleeg S; Hagendorfer H; Burkhardt M; Siegrist H
    Environ Sci Technol; 2011 May; 45(9):3902-8. PubMed ID: 21466186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching of Cu and Zn from discarded boat paint particles into tap water and rain water.
    Jessop A; Turner A
    Chemosphere; 2011 Jun; 83(11):1575-80. PubMed ID: 21300396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silver nanoparticles: behaviour and effects in the aquatic environment.
    Fabrega J; Luoma SN; Tyler CR; Galloway TS; Lead JR
    Environ Int; 2011 Feb; 37(2):517-31. PubMed ID: 21159383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment.
    Mühling M; Bradford A; Readman JW; Somerfield PJ; Handy RD
    Mar Environ Res; 2009 Dec; 68(5):278-83. PubMed ID: 19665221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation analysis of silver nanoparticles and silver ions in antibacterial products and environmental waters via cloud point extraction-based separation.
    Chao JB; Liu JF; Yu SJ; Feng YD; Tan ZQ; Liu R; Yin YG
    Anal Chem; 2011 Sep; 83(17):6875-82. PubMed ID: 21797201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver nanoparticles: green synthesis and their antimicrobial activities.
    Sharma VK; Yngard RA; Lin Y
    Adv Colloid Interface Sci; 2009 Jan; 145(1-2):83-96. PubMed ID: 18945421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaching of biocides from façades under natural weather conditions.
    Burkhardt M; Zuleeg S; Vonbank R; Bester K; Carmeliet J; Boller M; Wangler T
    Environ Sci Technol; 2012 May; 46(10):5497-503. PubMed ID: 22524149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fate of silver nanoparticles in soil solution--Sorption of solutes and aggregation.
    Klitzke S; Metreveli G; Peters A; Schaumann GE; Lang F
    Sci Total Environ; 2015 Dec; 535():54-60. PubMed ID: 25434472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step synthesis of silver nanoparticles by sonication or heating using amphiphilic block copolymer as templates.
    Lei Z; Zhang L; Wei X
    J Colloid Interface Sci; 2008 Aug; 324(1-2):216-9. PubMed ID: 18511062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of silver nanoparticles in single fractured sandstone.
    Neukum C
    J Contam Hydrol; 2018 Feb; 209():61-67. PubMed ID: 29396180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics.
    Zhang W; Yao Y; Sullivan N; Chen Y
    Environ Sci Technol; 2011 May; 45(10):4422-8. PubMed ID: 21513312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly sensitive turn-on detection of Ag+ in aqueous solution and live cells with a symmetric fluorescent peptide.
    Kim JM; Lohani CR; Neupane LN; Choi Y; Lee KH
    Chem Commun (Camb); 2012 Mar; 48(24):3012-4. PubMed ID: 22328991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The behavior of silver nanotextiles during washing.
    Geranio L; Heuberger M; Nowack B
    Environ Sci Technol; 2009 Nov; 43(21):8113-8. PubMed ID: 19924931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.