These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20621413)

  • 21. Analysis of adsorption characteristics of 2,4-dichlorophenol from aqueous solutions by activated carbon fiber.
    Wang JP; Feng HM; Yu HQ
    J Hazard Mater; 2007 Jun; 144(1-2):200-7. PubMed ID: 17118548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes.
    Wu FC; Tseng RL; Juang RS
    Environ Technol; 2001 Feb; 22(2):205-13. PubMed ID: 11349379
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activated carbons prepared from wood particleboard wastes: characterisation and phenol adsorption capacities.
    Girods P; Dufour A; Fierro V; Rogaume Y; Rogaume C; Zoulalian A; Celzard A
    J Hazard Mater; 2009 Jul; 166(1):491-501. PubMed ID: 19128878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Equilibrium and kinetics studies for adsorption of direct blue 71 from aqueous solution by wheat shells.
    Bulut Y; Gözübenli N; Aydin H
    J Hazard Mater; 2007 Jun; 144(1-2):300-6. PubMed ID: 17118540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid.
    Zhang Z; Cissoko N; Wo J; Xu X
    J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioregeneration of powdered activated carbon in the treatment of alkyl-substituted phenolic compounds in simultaneous adsorption and biodegradation processes.
    Lee KM; Lim PE
    Chemosphere; 2005 Jan; 58(4):407-16. PubMed ID: 15620732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.
    Nabais JM; Gomes JA; Suhas ; Carrott PJ; Laginhas C; Roman S
    J Hazard Mater; 2009 Aug; 167(1-3):904-10. PubMed ID: 19233559
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.
    Akhtar M; Bhanger MI; Iqbal S; Hasany SM
    J Hazard Mater; 2006 Jan; 128(1):44-52. PubMed ID: 16126338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adsorption of Zn(II) in aqueous solution by activated carbons prepared from evergreen oak (Quercus rotundifolia L.).
    Gómez-Tamayo Mdel M; Macías-García A; Díaz Díez MA; Cuerda-Correa EM
    J Hazard Mater; 2008 May; 153(1-2):28-36. PubMed ID: 17875366
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isotherm and kinetics study for acrylic acid removal using powdered activated carbon.
    Kumar A; Prasad B; Mishra IM
    J Hazard Mater; 2010 Apr; 176(1-3):774-83. PubMed ID: 20018446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorptive removal of 2,4-dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement.
    Bhatnagar A; Minocha AK
    J Hazard Mater; 2009 Sep; 168(2-3):1111-7. PubMed ID: 19329248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biosorption of phenol and 2-chlorophenol by Funalia trogii pellets.
    Bayramoglu G; Gursel I; Tunali Y; Arica MY
    Bioresour Technol; 2009 May; 100(10):2685-91. PubMed ID: 19186052
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation.
    Altenor S; Carene B; Emmanuel E; Lambert J; Ehrhardt JJ; Gaspard S
    J Hazard Mater; 2009 Jun; 165(1-3):1029-39. PubMed ID: 19118948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption characteristics of N-nitrosodimethylamine from aqueous solution on surface-modified activated carbons.
    Dai X; Zou L; Yan Z; Millikan M
    J Hazard Mater; 2009 Aug; 168(1):51-6. PubMed ID: 19304376
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on fluoride removal using adsorption process.
    Tembhurkar AR; Dongre S
    J Environ Sci Eng; 2006 Jul; 48(3):151-6. PubMed ID: 17915776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preparation of activated carbons from agricultural residues for pesticide adsorption.
    Ioannidou OA; Zabaniotou AA; Stavropoulos GG; Islam MA; Albanis TA
    Chemosphere; 2010 Sep; 80(11):1328-36. PubMed ID: 20598734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models.
    Ozkaya B
    J Hazard Mater; 2006 Feb; 129(1-3):158-63. PubMed ID: 16198050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waste-derived activated carbons for removal of ibuprofen from solution: role of surface chemistry and pore structure.
    Mestre AS; Pires J; Nogueira JM; Parra JB; Carvalho AP; Ania CO
    Bioresour Technol; 2009 Mar; 100(5):1720-6. PubMed ID: 19006666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater.
    Wang S; Zhu ZH; Coomes A; Haghseresht F; Lu GQ
    J Colloid Interface Sci; 2005 Apr; 284(2):440-6. PubMed ID: 15780280
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Equilibrium, kinetics and mechanism of malachite green adsorption on activated carbon prepared from bamboo by K(2)CO(3) activation and subsequent gasification with CO(2).
    Hameed BH; El-Khaiary MI
    J Hazard Mater; 2008 Sep; 157(2-3):344-51. PubMed ID: 18280648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.