BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 20621571)

  • 1. DNA-ligand binding and the force-extension experiments. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Chaurasiya et al.
    Vologodskii A
    Phys Life Rev; 2010 Sep; 7(3):346-7; discussion 358-61. PubMed ID: 20621571
    [No Abstract]   [Full Text] [Related]  

  • 2. Biophysics of DNA-ligand interactions resolved by force. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by K.R. Chaurasiya et al.
    Peterman EJ; Gross P
    Phys Life Rev; 2010 Sep; 7(3):344-5; discussion 358-61. PubMed ID: 20598655
    [No Abstract]   [Full Text] [Related]  

  • 3. DNA binding by bacterial nucleoid proteins and the DNA overstretching transition. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Mark C. Williams et al.
    Yan J
    Phys Life Rev; 2010 Sep; 7(3):342-3; discussion 358-61. PubMed ID: 20598658
    [No Abstract]   [Full Text] [Related]  

  • 4. DNA overstretched state: S-DNA form or force-induced melting? Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Mark C. Williams et al.
    Krichevsky O
    Phys Life Rev; 2010 Sep; 7(3):350-2; discussion 358-61. PubMed ID: 20673652
    [No Abstract]   [Full Text] [Related]  

  • 5. Wonderful world of single biopolymer thermodynamics. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by K.R. Chaurasiya et al.
    Metzler R
    Phys Life Rev; 2010 Sep; 7(3):355-7; discussion 358-61. PubMed ID: 20667796
    [No Abstract]   [Full Text] [Related]  

  • 6. Microscopic implications of competing pictures of DNA overstretching. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Kathy R. Chaurasiya, Thayaparan Paramanathan, Micah J. McCauley and Mark C. Williams.
    Whitelam S
    Phys Life Rev; 2010 Sep; 7(3):348-9; discussion 358-61. PubMed ID: 20621570
    [No Abstract]   [Full Text] [Related]  

  • 7. Single molecule force measurements: insights from molecular simulations. Comment on "Biophysical characterization of DNA binding from single molecule force measurements" by Kathy R. Chaurasiya et al.
    Maffeo C; Aksimentiev A
    Phys Life Rev; 2010 Sep; 7(3):353-4; discussion 358-61. PubMed ID: 20673653
    [No Abstract]   [Full Text] [Related]  

  • 8. Single molecule force spectroscopy on ligand-DNA complexes: from molecular binding mechanisms to biosensor applications.
    Ros R; Eckel R; Bartels F; Sischka A; Baumgarth B; Wilking SD; Pühler A; Sewald N; Becker A; Anselmetti D
    J Biotechnol; 2004 Aug; 112(1-2):5-12. PubMed ID: 15288936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and dynamics of MarA-DNA complexes: an NMR investigation.
    Dangi B; Pelupessey P; Martin RG; Rosner JL; Louis JM; Gronenborn AM
    J Mol Biol; 2001 Nov; 314(1):113-27. PubMed ID: 11724537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical characterization of the structure-specific DNA-binding protein Cmb1 from Schizosaccharomyces pombe.
    Sassoon J; Lilie H; Baumann U; Kohli J
    J Mol Biol; 2001 Jun; 309(5):1101-15. PubMed ID: 11399082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical analysis of dynamic force spectroscopy experiments on ligand-receptor complexes.
    Raible M; Evstigneev M; Reimann P; Bartels FW; Ros R
    J Biotechnol; 2004 Aug; 112(1-2):13-23. PubMed ID: 15288937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates.
    Lyubchenko YL; Gall AA; Shlyakhtenko LS
    Methods Mol Biol; 2001; 148():569-78. PubMed ID: 11357614
    [No Abstract]   [Full Text] [Related]  

  • 14. The acidic tail of the high mobility group protein HMG-D modulates the structural selectivity of DNA binding.
    Payet D; Travers A
    J Mol Biol; 1997 Feb; 266(1):66-75. PubMed ID: 9054971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual stabilisation of bacteriophage Mu repressor and histone-like proteins in a nucleoprotein structure.
    Betermier M; Rousseau P; Alazard R; Chandler M
    J Mol Biol; 1995 Jun; 249(2):332-41. PubMed ID: 7783197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p: reinterpretation of recent single molecule experiments.
    Stigter D
    Biophys Chem; 2004 Jul; 110(1-2):171-8. PubMed ID: 15223152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational flexibility of B-DNA at 0.74 A resolution: d(CCAGTACTGG)(2).
    Kielkopf CL; Ding S; Kuhn P; Rees DC
    J Mol Biol; 2000 Feb; 296(3):787-801. PubMed ID: 10677281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of nucleic acid recognition sequences by SELEX.
    Bouvet P
    Methods Mol Biol; 2001; 148():603-10. PubMed ID: 11357617
    [No Abstract]   [Full Text] [Related]  

  • 19. Quantifying force-dependent and zero-force DNA intercalation by single-molecule stretching.
    Vladescu ID; McCauley MJ; Nuñez ME; Rouzina I; Williams MC
    Nat Methods; 2007 Jun; 4(6):517-22. PubMed ID: 17468764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage T4 gene 59 helicase assembly protein binds replication fork DNA. The 1.45 A resolution crystal structure reveals a novel alpha-helical two-domain fold.
    Mueser TC; Jones CE; Nossal NG; Hyde CC
    J Mol Biol; 2000 Feb; 296(2):597-612. PubMed ID: 10669611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.