These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 20621582)

  • 1. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles.
    Studer AM; Limbach LK; Van Duc L; Krumeich F; Athanassiou EK; Gerber LC; Moch H; Stark WJ
    Toxicol Lett; 2010 Sep; 197(3):169-74. PubMed ID: 20621582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.
    Midander K; Cronholm P; Karlsson HL; Elihn K; Möller L; Leygraf C; Wallinder IO
    Small; 2009 Mar; 5(3):389-99. PubMed ID: 19148889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.
    Simon-Deckers A; Gouget B; Mayne-L'hermite M; Herlin-Boime N; Reynaud C; Carrière M
    Toxicology; 2008 Nov; 253(1-3):137-46. PubMed ID: 18835419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.
    Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H
    Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae.
    Kasemets K; Ivask A; Dubourguier HC; Kahru A
    Toxicol In Vitro; 2009 Sep; 23(6):1116-22. PubMed ID: 19486936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells.
    Harne S; Sharma A; Dhaygude M; Joglekar S; Kodam K; Hudlikar M
    Colloids Surf B Biointerfaces; 2012 Jun; 95():284-8. PubMed ID: 22483347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells.
    Cronholm P; Midander K; Karlsson HL; Elihn K; Wallinder IO; Möller L
    Nanotoxicology; 2011 Jun; 5(2):269-81. PubMed ID: 21117831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles.
    Meng H; Chen Z; Xing G; Yuan H; Chen C; Zhao F; Zhang C; Zhao Y
    Toxicol Lett; 2007 Dec; 175(1-3):102-10. PubMed ID: 18024012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.
    Rahme K; Vicendo P; Ayela C; Gaillard C; Payré B; Mingotaud C; Gauffre F
    Chemistry; 2009 Oct; 15(42):11151-9. PubMed ID: 19768714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles.
    Zhang L; Bai R; Liu Y; Meng L; Li B; Wang L; Xu L; Le Guyader L; Chen C
    Nanotoxicology; 2012 Aug; 6(5):562-75. PubMed ID: 21657985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles.
    Wang Z; Zhang K; Zhao J; Liu X; Xing B
    Chemosphere; 2010 Mar; 79(1):86-92. PubMed ID: 20089293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.
    Aruoja V; Dubourguier HC; Kasemets K; Kahru A
    Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment.
    Kato H; Fujita K; Horie M; Suzuki M; Nakamura A; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Kinugasa S
    Toxicol In Vitro; 2010 Apr; 24(3):1009-18. PubMed ID: 20006982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic monitoring of metal oxide nanoparticle toxicity by label free impedance sensing.
    Seiffert JM; Baradez MO; Nischwitz V; Lekishvili T; Goenaga-Infante H; Marshall D
    Chem Res Toxicol; 2012 Jan; 25(1):140-52. PubMed ID: 22054034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes.
    Farkas J; Christian P; Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV
    Aquat Toxicol; 2010 Jan; 96(1):44-52. PubMed ID: 19853932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape.
    Piret JP; Vankoningsloo S; Mejia J; Noël F; Boilan E; Lambinon F; Zouboulis CC; Masereel B; Lucas S; Saout C; Toussaint O
    Nanotoxicology; 2012 Nov; 6(7):789-803. PubMed ID: 22023055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example.
    Krznarić D; Helz GR; Bura-Nakić E; Jurasin D
    Anal Chem; 2008 Feb; 80(3):742-9. PubMed ID: 18183961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.