BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 20621582)

  • 1. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles.
    Studer AM; Limbach LK; Van Duc L; Krumeich F; Athanassiou EK; Gerber LC; Moch H; Stark WJ
    Toxicol Lett; 2010 Sep; 197(3):169-74. PubMed ID: 20621582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.
    Midander K; Cronholm P; Karlsson HL; Elihn K; Möller L; Leygraf C; Wallinder IO
    Small; 2009 Mar; 5(3):389-99. PubMed ID: 19148889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes.
    Simon-Deckers A; Gouget B; Mayne-L'hermite M; Herlin-Boime N; Reynaud C; Carrière M
    Toxicology; 2008 Nov; 253(1-3):137-46. PubMed ID: 18835419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.
    Saison C; Perreault F; Daigle JC; Fortin C; Claverie J; Morin M; Popovic R
    Aquat Toxicol; 2010 Jan; 96(2):109-14. PubMed ID: 19883948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells: cytotoxicity, permeability, and inflammation of metal oxide nanoparticles.
    Sun J; Wang S; Zhao D; Hun FH; Weng L; Liu H
    Cell Biol Toxicol; 2011 Oct; 27(5):333-42. PubMed ID: 21681618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus.
    Baek YW; An YJ
    Sci Total Environ; 2011 Mar; 409(8):1603-8. PubMed ID: 21310463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae.
    Kasemets K; Ivask A; Dubourguier HC; Kahru A
    Toxicol In Vitro; 2009 Sep; 23(6):1116-22. PubMed ID: 19486936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells.
    Harne S; Sharma A; Dhaygude M; Joglekar S; Kodam K; Hudlikar M
    Colloids Surf B Biointerfaces; 2012 Jun; 95():284-8. PubMed ID: 22483347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of sonication and serum proteins on copper release from copper nanoparticles and the toxicity towards lung epithelial cells.
    Cronholm P; Midander K; Karlsson HL; Elihn K; Wallinder IO; Möller L
    Nanotoxicology; 2011 Jun; 5(2):269-81. PubMed ID: 21117831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agglomeration of tungsten carbide nanoparticles in exposure medium does not prevent uptake and toxicity toward a rainbow trout gill cell line.
    Kühnel D; Busch W; Meissner T; Springer A; Potthoff A; Richter V; Gelinsky M; Scholz S; Schirmer K
    Aquat Toxicol; 2009 Jun; 93(2-3):91-9. PubMed ID: 19439373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles.
    Meng H; Chen Z; Xing G; Yuan H; Chen C; Zhao F; Zhang C; Zhao Y
    Toxicol Lett; 2007 Dec; 175(1-3):102-10. PubMed ID: 18024012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple protocol to stabilize gold nanoparticles using amphiphilic block copolymers: stability studies and viable cellular uptake.
    Rahme K; Vicendo P; Ayela C; Gaillard C; Payré B; Mingotaud C; Gauffre F
    Chemistry; 2009 Oct; 15(42):11151-9. PubMed ID: 19768714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dose-dependent toxicological effects and potential perturbation on the neurotransmitter secretion in brain following intranasal instillation of copper nanoparticles.
    Zhang L; Bai R; Liu Y; Meng L; Li B; Wang L; Xu L; Le Guyader L; Chen C
    Nanotoxicology; 2012 Aug; 6(5):562-75. PubMed ID: 21657985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption and inhibition of butyrylcholinesterase by different engineered nanoparticles.
    Wang Z; Zhang K; Zhao J; Liu X; Xing B
    Chemosphere; 2010 Mar; 79(1):86-92. PubMed ID: 20089293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.
    Aruoja V; Dubourguier HC; Kasemets K; Kahru A
    Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion characteristics of various metal oxide secondary nanoparticles in culture medium for in vitro toxicology assessment.
    Kato H; Fujita K; Horie M; Suzuki M; Nakamura A; Endoh S; Yoshida Y; Iwahashi H; Takahashi K; Kinugasa S
    Toxicol In Vitro; 2010 Apr; 24(3):1009-18. PubMed ID: 20006982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic monitoring of metal oxide nanoparticle toxicity by label free impedance sensing.
    Seiffert JM; Baradez MO; Nischwitz V; Lekishvili T; Goenaga-Infante H; Marshall D
    Chem Res Toxicol; 2012 Jan; 25(1):140-52. PubMed ID: 22054034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of silver and gold nanoparticles on rainbow trout (Oncorhynchus mykiss) hepatocytes.
    Farkas J; Christian P; Urrea JA; Roos N; Hassellöv M; Tollefsen KE; Thomas KV
    Aquat Toxicol; 2010 Jan; 96(1):44-52. PubMed ID: 19853932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape.
    Piret JP; Vankoningsloo S; Mejia J; Noël F; Boilan E; Lambinon F; Zouboulis CC; Masereel B; Lucas S; Saout C; Toussaint O
    Nanotoxicology; 2012 Nov; 6(7):789-803. PubMed ID: 22023055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation mechanism for metal chalcogenide nanoparticles at Hg0 electrodes: copper sulfide example.
    Krznarić D; Helz GR; Bura-Nakić E; Jurasin D
    Anal Chem; 2008 Feb; 80(3):742-9. PubMed ID: 18183961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.