These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20623041)

  • 1. Single-molecule imaging of NGF axonal transport in microfluidic devices.
    Zhang K; Osakada Y; Vrljic M; Chen L; Mudrakola HV; Cui B
    Lab Chip; 2010 Oct; 10(19):2566-73. PubMed ID: 20623041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for producing mono-biotinylated, biologically active neurotrophic factors: an essential reagent for single molecule study of axonal transport.
    Sung K; Maloney MT; Yang J; Wu C
    J Neurosci Methods; 2011 Sep; 200(2):121-8. PubMed ID: 21756937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One at a time, live tracking of NGF axonal transport using quantum dots.
    Cui B; Wu C; Chen L; Ramirez A; Bearer EL; Li WP; Mobley WC; Chu S
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13666-71. PubMed ID: 17698956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking Quantum-Dot labeled neurotropic factors transport along primary neuronal axons in compartmental microfluidic chambers.
    Gluska S; Chein M; Rotem N; Ionescu A; Perlson E
    Methods Cell Biol; 2016; 131():365-87. PubMed ID: 26794524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Microfluidic Culture Platform to Assess Axon Degeneration.
    Yong Y; Hughes C; Deppmann C
    Methods Mol Biol; 2020; 2143():83-96. PubMed ID: 32524474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precursor and mature NGF live tracking: one versus many at a time in the axons.
    De Nadai T; Marchetti L; Di Rienzo C; Calvello M; Signore G; Di Matteo P; Gobbo F; Turturro S; Meucci S; Viegi A; Beltram F; Luin S; Cattaneo A
    Sci Rep; 2016 Feb; 6():20272. PubMed ID: 26829890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic culture platform for CNS axonal injury, regeneration and transport.
    Taylor AM; Blurton-Jones M; Rhee SW; Cribbs DH; Cotman CW; Jeon NL
    Nat Methods; 2005 Aug; 2(8):599-605. PubMed ID: 16094385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biogenesis and function of the NGF/TrkA signaling endosome.
    Marlin MC; Li G
    Int Rev Cell Mol Biol; 2015; 314():239-57. PubMed ID: 25619719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrograde transport of neurotrophins: fact and function.
    Campenot RB; MacInnis BL
    J Neurobiol; 2004 Feb; 58(2):217-29. PubMed ID: 14704954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches.
    Sainath R; Gallo G
    Dev Neurobiol; 2015 Jul; 75(7):757-77. PubMed ID: 25404503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric and computational assessments to evaluate neuron survival and maturation within compartmentalized microfluidic devices: The influence of design variation on diffusion-driven nutrient transport.
    Dixon AR; Horst EN; Garcia JJ; Ndjouyep-Yamaga PR; Mehta G
    Neurosci Lett; 2019 Jun; 703():58-67. PubMed ID: 30885631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures.
    Mok SA; Lund K; Campenot RB
    Cell Res; 2009 May; 19(5):546-60. PubMed ID: 19188931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence in support of signaling endosome-based retrograde survival of sympathetic neurons.
    Ye H; Kuruvilla R; Zweifel LS; Ginty DD
    Neuron; 2003 Jul; 39(1):57-68. PubMed ID: 12848932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrograde NGF axonal transport--motor coordination in the unidirectional motility regime.
    Chowdary PD; Che DL; Zhang K; Cui B
    Biophys J; 2015 Jun; 108(11):2691-703. PubMed ID: 26039170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrograde transport and steady-state distribution of 125I-nerve growth factor in rat sympathetic neurons in compartmented cultures.
    Ure DR; Campenot RB
    J Neurosci; 1997 Feb; 17(4):1282-90. PubMed ID: 9006972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatially and functionally distinct roles of the PI3-K effector pathway during NGF signaling in sympathetic neurons.
    Kuruvilla R; Ye H; Ginty DD
    Neuron; 2000 Sep; 27(3):499-512. PubMed ID: 11055433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis.
    Tani T; Miyamoto Y; Fujimori KE; Taguchi T; Yanagida T; Sako Y; Harada Y
    J Neurosci; 2005 Mar; 25(9):2181-91. PubMed ID: 15745944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semaphorin3A regulates axon growth independently of growth cone repulsion via modulation of TrkA signaling.
    Ben-Zvi A; Ben-Gigi L; Yagil Z; Lerman O; Behar O
    Cell Signal; 2008 Mar; 20(3):467-79. PubMed ID: 18096366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial movement and positioning in axons: the role of growth factor signaling.
    Chada SR; Hollenbeck PJ
    J Exp Biol; 2003 Jun; 206(Pt 12):1985-92. PubMed ID: 12756280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve growth factor promotes reorganization of the axonal microtubule array at sites of axon collateral branching.
    Ketschek A; Jones S; Spillane M; Korobova F; Svitkina T; Gallo G
    Dev Neurobiol; 2015 Dec; 75(12):1441-61. PubMed ID: 25846486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.