BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20623074)

  • 1. Discrimination of dopamine and ascorbic acid using carbon nanotube fiber microelectrodes.
    Viry L; Derré A; Poulin P; Kuhn A
    Phys Chem Chem Phys; 2010 Sep; 12(34):9993-5. PubMed ID: 20623074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference of ascorbic acid in the sensitive detection of dopamine by a nonoxidative sensing approach.
    Ali SR; Parajuli RR; Ma Y; Balogun Y; He H
    J Phys Chem B; 2007 Oct; 111(42):12275-81. PubMed ID: 17914792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-modified carbon fiber microelectrodes for in vivo voltammetric measurement of ascorbic acid in rat brain.
    Zhang M; Liu K; Xiang L; Lin Y; Su L; Mao L
    Anal Chem; 2007 Sep; 79(17):6559-65. PubMed ID: 17676820
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube film modified glassy carbon electrode.
    Zhang Y; Cai Y; Su S
    Anal Biochem; 2006 Mar; 350(2):285-91. PubMed ID: 16457772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of carbon nanotube fiber microelectrodes for neurotransmitter detection: Correlation of electrochemical performance and surface properties.
    Yang C; Trikantzopoulos E; Jacobs CB; Venton BJ
    Anal Chim Acta; 2017 May; 965():1-8. PubMed ID: 28366206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes.
    Moreno M; Arribas AS; Bermejo E; Chicharro M; Zapardiel A; Rodríguez MC; Jalit Y; Rivas GA
    Talanta; 2010 Mar; 80(5):2149-56. PubMed ID: 20152465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode.
    Huang J; Liu Y; Hou H; You T
    Biosens Bioelectron; 2008 Dec; 24(4):632-7. PubMed ID: 18640024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo.
    Swamy BE; Venton BJ
    Analyst; 2007 Sep; 132(9):876-84. PubMed ID: 17710262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine.
    Ali SR; Ma Y; Parajuli RR; Balogun Y; Lai WY; He H
    Anal Chem; 2007 Mar; 79(6):2583-7. PubMed ID: 17286387
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly selective and sensitive determination of dopamine using a Nafion/carbon nanotubes coated poly(3-methylthiophene) modified electrode.
    Wang HS; Li TH; Jia WL; Xu HY
    Biosens Bioelectron; 2006 Dec; 22(5):664-9. PubMed ID: 16621509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional groups modulate the sensitivity and electron transfer kinetics of neurochemicals at carbon nanotube modified microelectrodes.
    Jacobs CB; Vickrey TL; Venton BJ
    Analyst; 2011 Sep; 136(17):3557-65. PubMed ID: 21373669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vertically aligned carbon nanotube-sheathed carbon fibers as pristine microelectrodes for selective monitoring of ascorbate in vivo.
    Xiang L; Yu P; Hao J; Zhang M; Zhu L; Dai L; Mao L
    Anal Chem; 2014 Apr; 86(8):3909-14. PubMed ID: 24678660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode.
    Zhang P; Wu FH; Zhao GC; Wei XW
    Bioelectrochemistry; 2005 Sep; 67(1):109-14. PubMed ID: 15950547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry.
    Ly SY
    Bioelectrochemistry; 2006 May; 68(2):227-31. PubMed ID: 16309972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.
    Wang CH; Wu CH; Wu JW; Lee MT; Chang JK; Ger MD; Sun CL
    Analyst; 2013 Jan; 138(2):576-82. PubMed ID: 23172364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Selective determination of dopamine in the presence of high concentration of ascorbic acid with L-cysteine modified glassy carbon electrodes].
    Ma XY; Chao Z; Li X; Xu HY; Zhang GR
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 May; 26(5):648-50. PubMed ID: 16762874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous determination of dopamine, ascorbic acid and uric acid at poly (Evans Blue) modified glassy carbon electrode.
    Lin L; Chen J; Yao H; Chen Y; Zheng Y; Lin X
    Bioelectrochemistry; 2008 Jun; 73(1):11-7. PubMed ID: 18417426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid.
    Lin X; Kang G; Lu L
    Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of carbon paste micro-electrode based on carbon nanoparticles.
    Hocevar SB; Ogorevc B
    Talanta; 2007 Dec; 74(3):405-11. PubMed ID: 18371656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilization of DNA on carbon fiber microelectrodes by using overoxidized polypyrrole template for selective detection of dopamine and epinephrine in the presence of high concentrations of ascorbic acid and uric acid.
    Jiang X; Lin X
    Analyst; 2005 Mar; 130(3):391-6. PubMed ID: 15724170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.