These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 20623074)
21. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Kim YR; Bong S; Kang YJ; Yang Y; Mahajan RK; Kim JS; Kim H Biosens Bioelectron; 2010 Jun; 25(10):2366-9. PubMed ID: 20307965 [TBL] [Abstract][Full Text] [Related]
22. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine. Zestos AG; Yang C; Jacobs CB; Hensley D; Venton BJ Analyst; 2015 Nov; 140(21):7283-92. PubMed ID: 26389138 [TBL] [Abstract][Full Text] [Related]
23. Microchip electrophoresis with wall-jet electrochemical detector: influence of detection potential upon resolution of solutes. Pumera M; Merkoçi A; Alegret S Electrophoresis; 2006 Dec; 27(24):5068-72. PubMed ID: 17117390 [TBL] [Abstract][Full Text] [Related]
24. Carbon nanotube fiber microelectrodes show a higher resistance to dopamine fouling. Harreither W; Trouillon R; Poulin P; Neri W; Ewing AG; Safina G Anal Chem; 2013 Aug; 85(15):7447-53. PubMed ID: 23789970 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical and catalytic investigations of dopamine and uric acid by modified carbon nanotube paste electrode. Mazloum-Ardakani M; Beitollahi H; Ganjipour B; Naeimi H; Nejati M Bioelectrochemistry; 2009 Apr; 75(1):1-8. PubMed ID: 19195936 [TBL] [Abstract][Full Text] [Related]
26. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Rocha LS; Carapuça HM Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Safavi A; Maleki N; Moradlou O; Tajabadi F Anal Biochem; 2006 Dec; 359(2):224-9. PubMed ID: 17069745 [TBL] [Abstract][Full Text] [Related]
28. Acid yellow 9 as a dispersing agent for carbon nanotubes: preparation of redox polymer-carbon nanotube composite film and its sensing application towards ascorbic acid and dopamine. Kumar SA; Wang SF; Yang TC; Yeh CT Biosens Bioelectron; 2010 Aug; 25(12):2592-7. PubMed ID: 20462750 [TBL] [Abstract][Full Text] [Related]
29. Electrochemical selective detection of dopamine on microbial carbohydrate-doped multiwall carbon nanotube-modified electrodes. Jin JH; Cho E; Jung S Biotechnol Lett; 2010 Mar; 32(3):413-9. PubMed ID: 19921114 [TBL] [Abstract][Full Text] [Related]
30. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces. Pumera M; Merkoçi A; Alegret S Electrophoresis; 2007 Apr; 28(8):1274-80. PubMed ID: 17366488 [TBL] [Abstract][Full Text] [Related]
32. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392 [TBL] [Abstract][Full Text] [Related]
33. Selective response of dopamine in the presence of ascorbic acid on carbon paste electrode modified with titanium phosphated silica gel. Kooshki M; Shams E Anal Chim Acta; 2007 Mar; 587(1):110-5. PubMed ID: 17386761 [TBL] [Abstract][Full Text] [Related]
35. Electrochemical oxidation of catecholamines and catechols at carbon nanotube electrodes. Maldonado S; Morin S; Stevenson KJ Analyst; 2006 Feb; 131(2):262-7. PubMed ID: 16440092 [TBL] [Abstract][Full Text] [Related]
36. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine. Yang C; Jacobs CB; Nguyen MD; Ganesana M; Zestos AG; Ivanov IN; Puretzky AA; Rouleau CM; Geohegan DB; Venton BJ Anal Chem; 2016 Jan; 88(1):645-52. PubMed ID: 26639609 [TBL] [Abstract][Full Text] [Related]
37. Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode. Hu G; Liu Y; Zhao J; Cui S; Yang Z; Zhang Y Bioelectrochemistry; 2006 Oct; 69(2):254-7. PubMed ID: 16698326 [TBL] [Abstract][Full Text] [Related]
38. Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Kalimuthu P; John SA Bioelectrochemistry; 2009 Nov; 77(1):13-8. PubMed ID: 19467620 [TBL] [Abstract][Full Text] [Related]
39. Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Li Y; Wang P; Wang L; Lin X Biosens Bioelectron; 2007 Jun; 22(12):3120-5. PubMed ID: 17350819 [TBL] [Abstract][Full Text] [Related]