These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 20623318)
1. Homology modeling and metabolism prediction of human carboxylesterase-2 using docking analyses by GriDock: a parallelized tool based on AutoDock 4.0. Vistoli G; Pedretti A; Mazzolari A; Testa B J Comput Aided Mol Des; 2010 Sep; 24(9):771-87. PubMed ID: 20623318 [TBL] [Abstract][Full Text] [Related]
2. In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analyses and MD simulations. Vistoli G; Pedretti A; Mazzolari A; Testa B Bioorg Med Chem; 2010 Jan; 18(1):320-9. PubMed ID: 19932971 [TBL] [Abstract][Full Text] [Related]
3. hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: Unwinding the hydrolytic mechanism using in silico approaches. Choudhary S; Silakari O J Mol Graph Model; 2019 Sep; 91():148-163. PubMed ID: 31252365 [TBL] [Abstract][Full Text] [Related]
4. Investigation binding patterns of human carboxylesterase I (hCES I) with broad substrates by MD simulations. Chu H; Min H; Zhang M; Shen H; Li G Curr Top Med Chem; 2013; 13(10):1222-33. PubMed ID: 23647544 [TBL] [Abstract][Full Text] [Related]
5. Contribution of human esterases to the metabolism of selected drugs of abuse. Meyer MR; Schütz A; Maurer HH Toxicol Lett; 2015 Jan; 232(1):159-66. PubMed ID: 25445008 [TBL] [Abstract][Full Text] [Related]
6. Difference in substrate specificity of carboxylesterase and arylacetamide deacetylase between dogs and humans. Yoshida T; Fukami T; Kurokawa T; Gotoh S; Oda A; Nakajima M Eur J Pharm Sci; 2018 Jan; 111():167-176. PubMed ID: 28966098 [TBL] [Abstract][Full Text] [Related]
7. Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino] carbonyloxycamptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxylesterase isoenzyme, CES3. Sanghani SP; Quinney SK; Fredenburg TB; Davis WI; Murry DJ; Bosron WF Drug Metab Dispos; 2004 May; 32(5):505-11. PubMed ID: 15100172 [TBL] [Abstract][Full Text] [Related]
8. Biochemical and molecular analysis of carboxylesterase-mediated hydrolysis of cocaine and heroin. Hatfield MJ; Tsurkan L; Hyatt JL; Yu X; Edwards CC; Hicks LD; Wadkins RM; Potter PM Br J Pharmacol; 2010 Aug; 160(8):1916-28. PubMed ID: 20649590 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the inhibition of human carboxylesterases (CESs) by the active ingredients from Fu Q; Yang K; Hu RX; Du Z; Hu CM; Zhang X Xenobiotica; 2019 Nov; 49(11):1260-1268. PubMed ID: 30486721 [TBL] [Abstract][Full Text] [Related]
10. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver. Zhu HJ; Appel DI; Jiang Y; Markowitz JS Drug Metab Dispos; 2009 Sep; 37(9):1819-25. PubMed ID: 19487248 [TBL] [Abstract][Full Text] [Related]
12. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2. Wang J; Williams ET; Bourgea J; Wong YN; Patten CJ Drug Metab Dispos; 2011 Aug; 39(8):1329-33. PubMed ID: 21540359 [TBL] [Abstract][Full Text] [Related]
13. Cloning and molecular modeling of a thermostable carboxylesterase from the chicken uropygial glands. Fendri A; Frikha F; Louati H; Bou Ali M; Gargouri H; Gargouri Y; Miled N J Mol Graph Model; 2015 Mar; 56():1-9. PubMed ID: 25541525 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an alpha/beta hydrolase with broad substrate specificity. Kim KK; Song HK; Shin DH; Hwang KY; Choe S; Yoo OJ; Suh SW Structure; 1997 Dec; 5(12):1571-84. PubMed ID: 9438866 [TBL] [Abstract][Full Text] [Related]
15. Comparison of substrate specificity among human arylacetamide deacetylase and carboxylesterases. Fukami T; Kariya M; Kurokawa T; Iida A; Nakajima M Eur J Pharm Sci; 2015 Oct; 78():47-53. PubMed ID: 26164127 [TBL] [Abstract][Full Text] [Related]
16. Differences in Intestinal Hydrolytic Activities between Cynomolgus Monkeys and Humans: Evaluation of Substrate Specificities Using Recombinant Carboxylesterase 2 Isozymes. Igawa Y; Fujiwara S; Ohura K; Hirokawa T; Nishizawa Y; Uehara S; Uno Y; Imai T Mol Pharm; 2016 Sep; 13(9):3176-86. PubMed ID: 27454346 [TBL] [Abstract][Full Text] [Related]
17. Stereoselective characteristics and mechanisms of epidermal carboxylesterase metabolism observed in HaCaT keratinocytes. Zhu QG; Hu JH; Liu JY; Lu SW; Liu YX; Wang J Biol Pharm Bull; 2007 Mar; 30(3):532-6. PubMed ID: 17329851 [TBL] [Abstract][Full Text] [Related]
18. Computational analysis of carboxylesterase genes and proteins in non-pathogenic food bacterium Alicyclobacillus acidocaldarius: insights from proteogenomics. Sraphet S; Javadi B World J Microbiol Biotechnol; 2023 Oct; 39(12):348. PubMed ID: 37855845 [TBL] [Abstract][Full Text] [Related]
19. Discovery of novel carboxylesterase 2 inhibitors for the treatment of delayed diarrhea and ulcerative colitis. Cao Z; Liu Y; Chen S; Wang W; Yang Z; Chen Y; Jiao S; Huang W; Chen L; Sun L; Li Z; Zhang L Biochem Pharmacol; 2023 Sep; 215():115742. PubMed ID: 37567318 [TBL] [Abstract][Full Text] [Related]
20. Mouse liver and kidney carboxylesterase (M-LK) rapidly hydrolyzes antitumor prodrug irinotecan and the N-terminal three quarter sequence determines substrate selectivity. Xie M; Yang D; Wu M; Xue B; Yan B Drug Metab Dispos; 2003 Jan; 31(1):21-7. PubMed ID: 12485949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]