These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20623350)

  • 1. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.
    Levine ZA; Vernier PT
    J Membr Biol; 2010 Jul; 236(1):27-36. PubMed ID: 20623350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.
    Levine ZA; Vernier PT
    J Membr Biol; 2012 Oct; 245(10):599-610. PubMed ID: 22815071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
    Castellani F; Teissié J; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):229-236. PubMed ID: 29094194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers.
    Vernier PT; Ziegler MJ
    J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.
    Ho MC; Levine ZA; Vernier PT
    J Membr Biol; 2013 Nov; 246(11):793-801. PubMed ID: 23644990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation.
    Marracino P; Caramazza L; Montagna M; Ghahri R; D'Abramo M; Liberti M; Apollonio F
    Bioelectrochemistry; 2022 Feb; 143():107987. PubMed ID: 34794113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Characterization of an Electropore from Water Positional Fluctuations.
    Marracino P; Castellani F; Vernier PT; Liberti M; Apollonio F
    J Membr Biol; 2017 Feb; 250(1):11-19. PubMed ID: 27435217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
    Kotnik T; Rems L; Tarek M; Miklavčič D
    Annu Rev Biophys; 2019 May; 48():63-91. PubMed ID: 30786231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation of Skin Stratum Corneum Lipid Bilayer and Molecular Mechanism of Drug Transport: A Molecular Dynamics Study.
    Gupta R; Rai B
    Langmuir; 2018 May; 34(20):5860-5870. PubMed ID: 29708340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond and Terahertz Perturbation of Interfacial Water and Electropermeabilization of Biological Membranes.
    Vernier PT; Levine ZA; Ho MC; Xiao S; Semenov I; Pakhomov AG
    J Membr Biol; 2015 Oct; 248(5):837-47. PubMed ID: 25796485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching.
    Koshiyama K; Wada S
    J Biomech; 2011 Jul; 44(11):2053-8. PubMed ID: 21658696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations.
    Böckmann RA; de Groot BL; Kakorin S; Neumann E; Grubmüller H
    Biophys J; 2008 Aug; 95(4):1837-50. PubMed ID: 18469089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulation of reversible electroporation with Martini force field.
    Zhou C; Liu K
    Biomed Eng Online; 2019 Dec; 18(1):123. PubMed ID: 31878975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of different membrane components on the electrical stability of bilayer lipid membranes.
    van Uitert I; Le Gac S; van den Berg A
    Biochim Biophys Acta; 2010 Jan; 1798(1):21-31. PubMed ID: 19835838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane.
    Yadav DK; Kumar S; Choi EH; Kim MH
    J Biomol Struct Dyn; 2021 Mar; 39(4):1343-1353. PubMed ID: 32072876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation.
    Kong Z; Wang H; Liang L; Zhang Z; Ying S; Hu Q; Shen JW
    J Mol Model; 2017 Apr; 23(4):113. PubMed ID: 28289956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.