BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 20623472)

  • 1. Binding modules alter the activity of chimeric cellulases: Effects of biomass pretreatment and enzyme source.
    Kim TW; Chokhawala HA; Nadler DC; Blanch HW; Clark DS
    Biotechnol Bioeng; 2010 Nov; 107(4):601-11. PubMed ID: 20623472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes.
    Mingardon F; Chanal A; López-Contreras AM; Dray C; Bayer EA; Fierobe HP
    Appl Environ Microbiol; 2007 Jun; 73(12):3822-32. PubMed ID: 17468286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding characteristics of Trichoderma reesei cellulases on untreated, ammonia fiber expansion (AFEX), and dilute-acid pretreated lignocellulosic biomass.
    Gao D; Chundawat SP; Uppugundla N; Balan V; Dale BE
    Biotechnol Bioeng; 2011 Aug; 108(8):1788-800. PubMed ID: 21437882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ imaging of single carbohydrate-binding modules on cellulose microfibrils.
    Dagel DJ; Liu YS; Zhong L; Luo Y; Himmel ME; Xu Q; Zeng Y; Ding SY; Smith S
    J Phys Chem B; 2011 Feb; 115(4):635-41. PubMed ID: 21162585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis.
    Liu JM; Xin XJ; Li CX; Xu JH; Bao J
    Appl Biochem Biotechnol; 2012 Feb; 166(3):652-62. PubMed ID: 22101447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-specific biomass recalcitrance in corn stover pretreated with liquid hot-water: enzymatic hydrolysis (part 1).
    Zeng M; Ximenes E; Ladisch MR; Mosier NS; Vermerris W; Huang CP; Sherman DM
    Biotechnol Bioeng; 2012 Feb; 109(2):390-7. PubMed ID: 21928336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates.
    Yang B; Wyman CE
    Biotechnol Bioeng; 2006 Jul; 94(4):611-7. PubMed ID: 16673419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellulases and biofuels.
    Wilson DB
    Curr Opin Biotechnol; 2009 Jun; 20(3):295-9. PubMed ID: 19502046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulase adsorption and relationship to features of corn stover solids produced by leading pretreatments.
    Kumar R; Wyman CE
    Biotechnol Bioeng; 2009 Jun; 103(2):252-67. PubMed ID: 19195015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of chimeric cellulases with enhanced catalytic activity towards insoluble cellulosic substrates.
    Telke AA; Ghatge SS; Kang SH; Thangapandian S; Lee KW; Shin HD; Um Y; Kim SW
    Bioresour Technol; 2012 May; 112():10-7. PubMed ID: 22409983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of cellulosomal family 9 cellulases from Clostridium cellulovorans.
    Arai T; Kosugi A; Chan H; Koukiekolo R; Yukawa H; Inui M; Doi RH
    Appl Microbiol Biotechnol; 2006 Aug; 71(5):654-60. PubMed ID: 16532315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion for Avicel and AFEX pretreated corn stover by Clostridium thermocellum and simultaneous saccharification and fermentation: insights into microbial conversion of pretreated cellulosic biomass.
    Shao X; Jin M; Guseva A; Liu C; Balan V; Hogsett D; Dale BE; Lynd L
    Bioresour Technol; 2011 Sep; 102(17):8040-5. PubMed ID: 21683579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes.
    Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME
    Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterologous co-production of Thermobifida fusca Cel9A with other cellulases in Saccharomyces cerevisiae.
    van Wyk N; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1813-20. PubMed ID: 20449742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consolidated bioprocessing of cellulosic biomass: an update.
    Lynd LR; van Zyl WH; McBride JE; Laser M
    Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of pretreatment and enzyme loading on the effectiveness of batch and fed-batch hydrolysis of corn stover.
    Chandra RP; Au-Yeung K; Chanis C; Roos AA; Mabee W; Chung PA; Ghatora S; Saddler JN
    Biotechnol Prog; 2011; 27(1):77-85. PubMed ID: 21312357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.
    Zhu Z; Sathitsuksanoh N; Vinzant T; Schell DJ; McMillan JD; Zhang YH
    Biotechnol Bioeng; 2009 Jul; 103(4):715-24. PubMed ID: 19337984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compatible ionic liquid-cellulases system for hydrolysis of lignocellulosic biomass.
    Wang Y; Radosevich M; Hayes D; Labbé N
    Biotechnol Bioeng; 2011 May; 108(5):1042-8. PubMed ID: 21191999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.