These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 20623657)

  • 1. Accurate estimation of solvation free energy using polynomial fitting techniques.
    Shyu C; Ytreberg FM
    J Comput Chem; 2011 Jan; 32(1):134-41. PubMed ID: 20623657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data.
    Shyu C; Ytreberg FM
    J Comput Chem; 2009 Nov; 30(14):2297-304. PubMed ID: 19266482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational design of ion force fields based on thermodynamic solvation properties.
    Horinek D; Mamatkulov SI; Netz RR
    J Chem Phys; 2009 Mar; 130(12):124507. PubMed ID: 19334851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations.
    Steinbrecher T; Joung I; Case DA
    J Comput Chem; 2011 Nov; 32(15):3253-63. PubMed ID: 21953558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of Derivative Thermodynamic Hydration and Aqueous Partial Molar Properties of Ions Based on Atomistic Simulations.
    Dahlgren B; Reif MM; Hünenberger PH; Hansen N
    J Chem Theory Comput; 2012 Oct; 8(10):3542-64. PubMed ID: 26593002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient and precise solvation free energies via alchemical adiabatic molecular dynamics.
    Abrams JB; Rosso L; Tuckerman ME
    J Chem Phys; 2006 Aug; 125(7):074115. PubMed ID: 16942330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydration free energy of a Model Lennard-Jones solute particle: microscopic Monte Carlo simulation studies, and interpretation based on mesoscopic models.
    Gruziel M; Rudnicki WR; Lesyng B
    J Chem Phys; 2008 Feb; 128(6):064503. PubMed ID: 18282052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear scaling schemes for Lennard-Jones interactions in free energy calculations.
    Steinbrecher T; Mobley DL; Case DA
    J Chem Phys; 2007 Dec; 127(21):214108. PubMed ID: 18067350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GAFF/IPolQ-Mod+LJ-Fit: Optimized force field parameters for solvation free energy predictions.
    Mecklenfeld A; Raabe G
    ADMET DMPK; 2020; 8(3):274-296. PubMed ID: 35300308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a methodology to compute solvation free energies on the basis of the theory of energy representation for solutions represented with a polarizable force field.
    Suzuoka D; Takahashi H; Ishiyama T; Morita A
    J Chem Phys; 2012 Dec; 137(21):214503. PubMed ID: 23231247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico prediction of drug solubility. 3. Free energy of solvation in pure amorphous matter.
    Lüder K; Lindfors L; Westergren J; Nordholm S; Kjellander R
    J Phys Chem B; 2007 Jun; 111(25):7303-11. PubMed ID: 17550285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performing solvation free energy calculations in LAMMPS using the decoupling approach.
    Khanna V; Monroe JI; Doherty MF; Peters B
    J Comput Aided Mol Des; 2020 Jun; 34(6):641-646. PubMed ID: 32112288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the accuracy of inhomogeneous fluid solvation theory in predicting hydration free energies of simple solutes.
    Huggins DJ; Payne MC
    J Phys Chem B; 2013 Jul; 117(27):8232-44. PubMed ID: 23763625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy simulations: the meaning of the individual contributions from a component analysis.
    Boresch S; Archontis G; Karplus M
    Proteins; 1994 Sep; 20(1):25-33. PubMed ID: 7824520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficiency of alchemical free energy simulations. II. Improvements for thermodynamic integration.
    Bruckner S; Boresch S
    J Comput Chem; 2011 May; 32(7):1320-33. PubMed ID: 21425289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of methodology-independent single-ion solvation properties from molecular simulations. III. Correction terms for the solvation free energies, enthalpies, entropies, heat capacities, volumes, compressibilities, and expansivities of solvated ions.
    Reif MM; Hünenberger PH
    J Chem Phys; 2011 Apr; 134(14):144103. PubMed ID: 21495738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic Decomposition of Solvation Free Energies with Particle Mesh Ewald and Long-Range Lennard-Jones Interactions in Grid Inhomogeneous Solvation Theory.
    Chen L; Cruz A; Roe DR; Simmonett AC; Wickstrom L; Deng N; Kurtzman T
    J Chem Theory Comput; 2021 May; 17(5):2714-2724. PubMed ID: 33830762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of free energy methods for molecular systems.
    Ytreberg FM; Swendsen RH; Zuckerman DM
    J Chem Phys; 2006 Nov; 125(18):184114. PubMed ID: 17115745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.