These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20623694)

  • 1. Transformation pathways of cocrystal hydrates when coformer modulates water activity.
    Jayasankar A; Roy L; Rodríguez-Hornedo N
    J Pharm Sci; 2010 Sep; 99(9):3977-85. PubMed ID: 20623694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms by which moisture generates cocrystals.
    Jayasankar A; Good DJ; Rodríguez-Hornedo N
    Mol Pharm; 2007; 4(3):360-72. PubMed ID: 17488034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.
    Eddleston MD; Madusanka N; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2865-2870. PubMed ID: 24824298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instability in theophylline and carbamazepine hydrate tablets: cocrystal formation due to release of lattice water.
    Arora KK; Thakral S; Suryanarayanan R
    Pharm Res; 2013 Jul; 30(7):1779-89. PubMed ID: 23568521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding.
    Karki S; Friscić T; Jones W; Motherwell WD
    Mol Pharm; 2007; 4(3):347-54. PubMed ID: 17497885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput 96-well solvent mediated sonic blending synthesis and on-plate solid/solution stability characterization of pharmaceutical cocrystals.
    Luu V; Jona J; Stanton MK; Peterson ML; Morrison HG; Nagapudi K; Tan H
    Int J Pharm; 2013 Jan; 441(1-2):356-64. PubMed ID: 23178596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical stability enhancement of theophylline via cocrystallization.
    Trask AV; Motherwell WD; Jones W
    Int J Pharm; 2006 Aug; 320(1-2):114-23. PubMed ID: 16769188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the causes of cocrystal dissociation at high humidity.
    Eddleston MD; Thakuria R; Aldous BJ; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2859-2864. PubMed ID: 24481664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical stability of crystal hydrates and their anhydrates in the presence of excipients.
    Salameh AK; Taylor LS
    J Pharm Sci; 2006 Feb; 95(2):446-61. PubMed ID: 16380975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Examination of Water Vapor Sorption by Multicomponent Crystalline and Amorphous Solids and Its Effects on Their Solid-State Properties.
    Newman A; Zografi G
    J Pharm Sci; 2019 Mar; 108(3):1061-1080. PubMed ID: 30391302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RH-temperature phase diagrams of hydrate forming deliquescent crystalline ingredients.
    Allan M; Mauer LJ
    Food Chem; 2017 Dec; 236():21-31. PubMed ID: 28624086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing pseudopolymorphic transitions in pharmaceutical solids using Raman spectroscopy: hydration and dehydration of theophylline.
    Amado AM; Nolasco MM; Ribeiro-Claro PJ
    J Pharm Sci; 2007 May; 96(5):1366-79. PubMed ID: 17455358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Co-Crystallization Mechanism of Theophylline and Citric Acid from Raman Investigations in Pseudo Polymorphic Forms Obtained by Different Synthesis Methods.
    Guinet Y; Paccou L; Hédoux A
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drug-drug cocrystals of antituberculous 4-aminosalicylic acid: Screening, crystal structures, thermochemical and solubility studies.
    Drozd KV; Manin AN; Churakov AV; Perlovich GL
    Eur J Pharm Sci; 2017 Mar; 99():228-239. PubMed ID: 28011126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theophylline-nicotinamide cocrystal formation in physical mixture during storage.
    Ervasti T; Aaltonen J; Ketolainen J
    Int J Pharm; 2015; 486(1-2):121-30. PubMed ID: 25800677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hansen solubility parameter as a tool to predict cocrystal formation.
    Mohammad MA; Alhalaweh A; Velaga SP
    Int J Pharm; 2011 Apr; 407(1-2):63-71. PubMed ID: 21256944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals.
    Ren S; Liu M; Hong C; Li G; Sun J; Wang J; Zhang L; Xie Y
    Acta Pharm Sin B; 2019 Jan; 9(1):59-73. PubMed ID: 30766778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening and Characterization of Hydrate Forms of T-3256336, a Novel Inhibitor of Apoptosis (IAP) Protein Antagonist.
    Takeuchi S; Kojima T; Hashimoto K; Saito B; Sumi H; Ishikawa T; Ikeda Y
    Chem Pharm Bull (Tokyo); 2015; 63(11):858-65. PubMed ID: 26521850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmaceutical cocrystals of diflunisal and diclofenac with theophylline.
    Surov AO; Voronin AP; Manin AN; Manin NG; Kuzmina LG; Churakov AV; Perlovich GL
    Mol Pharm; 2014 Oct; 11(10):3707-15. PubMed ID: 25184906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug-Coformer Interactions.
    Sanphui P; Devi VK; Clara D; Malviya N; Ganguly S; Desiraju GR
    Mol Pharm; 2015 May; 12(5):1615-22. PubMed ID: 25800383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.