These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 20623713)
1. Chemical dephosphorylation for identification of multiply phosphorylated peptides and phosphorylation site determination. Kyono Y; Sugiyama N; Tomita M; Ishihama Y Rapid Commun Mass Spectrom; 2010 Aug; 24(15):2277-82. PubMed ID: 20623713 [TBL] [Abstract][Full Text] [Related]
2. Mining phosphopeptide signals in liquid chromatography-mass spectrometry data for protein phosphorylation analysis. Wu HY; Tseng VS; Liao PC J Proteome Res; 2007 May; 6(5):1812-21. PubMed ID: 17402769 [TBL] [Abstract][Full Text] [Related]
3. Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. Li Y; Xu X; Qi D; Deng C; Yang P; Zhang X J Proteome Res; 2008 Jun; 7(6):2526-38. PubMed ID: 18473453 [TBL] [Abstract][Full Text] [Related]
4. Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial beta-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis. Ahn YH; Park EJ; Cho K; Kim JY; Ha SH; Ryu SH; Yoo JS Rapid Commun Mass Spectrom; 2004; 18(20):2495-501. PubMed ID: 15384178 [TBL] [Abstract][Full Text] [Related]
6. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry. Ding J; Burkhart W; Kassel DB Rapid Commun Mass Spectrom; 1994 Jan; 8(1):94-8. PubMed ID: 8118063 [TBL] [Abstract][Full Text] [Related]
7. Ethylenediaminetetraacetic acid increases identification rate of phosphoproteomics in real biological samples. Nakamura T; Myint KT; Oda Y J Proteome Res; 2010 Mar; 9(3):1385-91. PubMed ID: 20099890 [TBL] [Abstract][Full Text] [Related]
8. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656 [TBL] [Abstract][Full Text] [Related]
9. An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry. Liao PC; Leykam J; Andrews PC; Gage DA; Allison J Anal Biochem; 1994 May; 219(1):9-20. PubMed ID: 8059960 [TBL] [Abstract][Full Text] [Related]
10. Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. Adamczyk M; Gebler JC; Wu J Rapid Commun Mass Spectrom; 2001; 15(16):1481-8. PubMed ID: 11507762 [TBL] [Abstract][Full Text] [Related]
11. Protein phosphorylation and expression profiling by Yin-yang multidimensional liquid chromatography (Yin-yang MDLC) mass spectrometry. Dai J; Jin WH; Sheng QH; Shieh CH; Wu JR; Zeng R J Proteome Res; 2007 Jan; 6(1):250-62. PubMed ID: 17203969 [TBL] [Abstract][Full Text] [Related]
12. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Wolschin F; Wienkoop S; Weckwerth W Proteomics; 2005 Nov; 5(17):4389-97. PubMed ID: 16222723 [TBL] [Abstract][Full Text] [Related]
13. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
14. Enrichment of phosphoproteins and phosphopeptide derivatization identify universal stress proteins in elicitor-treated Arabidopsis. Lenman M; Sörensson C; Andreasson E Mol Plant Microbe Interact; 2008 Oct; 21(10):1275-84. PubMed ID: 18785823 [TBL] [Abstract][Full Text] [Related]
16. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Thingholm TE; Jensen ON; Larsen MR Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006 [TBL] [Abstract][Full Text] [Related]
17. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry. Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590 [TBL] [Abstract][Full Text] [Related]
18. Tracking and quantification of 32P-labeled phosphopeptides in liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry. Tuerk RD; Auchli Y; Thali RF; Scholz R; Wallimann T; Brunisholz RA; Neumann D Anal Biochem; 2009 Jul; 390(2):141-8. PubMed ID: 19376078 [TBL] [Abstract][Full Text] [Related]
19. Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. Pinkse MW; Mohammed S; Gouw JW; van Breukelen B; Vos HR; Heck AJ J Proteome Res; 2008 Feb; 7(2):687-97. PubMed ID: 18034456 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer dissociation in conjunction with collision activation to investigate the Drosophila melanogaster phosphoproteome. Domon B; Bodenmiller B; Carapito C; Hao Z; Huehmer A; Aebersold R J Proteome Res; 2009 Jun; 8(6):2633-9. PubMed ID: 19435317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]