These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20623806)

  • 41. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H; Furukawa Y
    J Phys Chem B; 2008 Jun; 112(23):7111-9. PubMed ID: 18476736
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of molecular interaction in stability of celecoxib-PVP amorphous systems.
    Gupta P; Thilagavathi R; Chakraborti AK; Bansal AK
    Mol Pharm; 2005; 2(5):384-91. PubMed ID: 16196491
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Apparatus for single ice crystal growth from the melt.
    Zepeda S; Nakatsubo S; Furukawa Y
    Rev Sci Instrum; 2009 Nov; 80(11):115102. PubMed ID: 19947752
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Synergistic Effect of Hyperactive Antifreeze Protein on Inhibition of Gas-Hydrate Growth by Hydrophobic and Hydrophilic Groups.
    Zhang N; Du YT; Yao PQ; Huang HY; Zhang LR; Zhang FS; Liu JJ
    J Phys Chem B; 2023 Dec; 127(49):10469-10477. PubMed ID: 38018897
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Anti-ice nucleating activity of polyphenol compounds against silver iodide.
    Koyama T; Inada T; Kuwabara C; Arakawa K; Fujikawa S
    Cryobiology; 2014 Oct; 69(2):223-8. PubMed ID: 25086201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Operation of Kelvin Effect in the Activities of an Antifreeze Protein: A Molecular Dynamics Simulation Study.
    Midya US; Bandyopadhyay S
    J Phys Chem B; 2018 Mar; 122(12):3079-3087. PubMed ID: 29488381
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ordered surface carbons distinguish antifreeze proteins and their ice-binding regions.
    Doxey AC; Yaish MW; Griffith M; McConkey BJ
    Nat Biotechnol; 2006 Jul; 24(7):852-5. PubMed ID: 16823370
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Do antifreeze proteins generally possess the potential to promote ice growth?
    Cui S; Zhang W; Shao X; Cai W
    Phys Chem Chem Phys; 2022 Mar; 24(13):7901-7908. PubMed ID: 35311839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of antifreeze proteins into polymer coatings using site-selective bioconjugation.
    Esser-Kahn AP; Trang V; Francis MB
    J Am Chem Soc; 2010 Sep; 132(38):13264-9. PubMed ID: 20825180
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct measurement of the thermal hysteresis of antifreeze proteins (AFPs) using sonocrystallization.
    Gaede-Koehler A; Kreider A; Canfield P; Kleemeier M; Grunwald I
    Anal Chem; 2012 Dec; 84(23):10229-35. PubMed ID: 23121544
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effect of antifreeze proteins and poly(vinyl alcohol) on the nucleation of ice: a preliminary study.
    Holt CB
    Cryo Letters; 2003; 24(5):323-30. PubMed ID: 14566392
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards the selection of a produced water enrichment for biological gas hydrate inhibitors.
    Wilson SL; Voordouw G; Walker VK
    Environ Sci Pollut Res Int; 2014 Sep; 21(17):10254-61. PubMed ID: 24819435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antifreeze glycoproteins: structure, conformation, and biological applications.
    Bouvet V; Ben RN
    Cell Biochem Biophys; 2003; 39(2):133-44. PubMed ID: 14515019
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates.
    Seo Y; Kang SP; Jang W
    J Phys Chem A; 2009 Sep; 113(35):9641-9. PubMed ID: 19658414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Antifreeze proteins of the beetle Dendroides canadensis enhance one another's activities.
    Wang L; Duman JG
    Biochemistry; 2005 Aug; 44(30):10305-12. PubMed ID: 16042407
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nonequilibrium antifreeze peptides and the recrystallization of ice.
    Knight CA; Wen D; Laursen RA
    Cryobiology; 1995 Feb; 32(1):23-34. PubMed ID: 7697996
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ice nucleation and supercooling behavior of polymer aqueous solutions.
    Kimizuka N; Viriyarattanasak C; Suzuki T
    Cryobiology; 2008 Feb; 56(1):80-7. PubMed ID: 18166169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.