BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 20624491)

  • 1. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450.
    Laursen T; Jensen K; Møller BL
    Biochim Biophys Acta; 2011 Jan; 1814(1):132-8. PubMed ID: 20624491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [NADPH-cytochrome P450 reductase, not only the partner of cytochrome P450].
    Wiśniewska A; Jagiełło K; Mazerska Z
    Postepy Biochem; 2009; 55(3):272-8. PubMed ID: 19928583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled motions direct electrons along human microsomal P450 Chains.
    Pudney CR; Khara B; Johannissen LO; Scrutton NS
    PLoS Biol; 2011 Dec; 9(12):e1001222. PubMed ID: 22205878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation kinetics of cytochrome P450 reductase: internal electron transfer is limited by conformational change and regulated by coenzyme binding.
    Gutierrez A; Paine M; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2002 Apr; 41(14):4626-37. PubMed ID: 11926825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopped-flow kinetic studies of flavin reduction in human cytochrome P450 reductase and its component domains.
    Gutierrez A; Lian LY; Wolf CR; Scrutton NS; Roberts GC
    Biochemistry; 2001 Feb; 40(7):1964-75. PubMed ID: 11329263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of cytochrome P450 reductase from Artemisia annua reveals accelerated rates of NADH-dependent flavin reduction.
    Simtchouk S; Eng JL; Meints CE; Makins C; Wolthers KR
    FEBS J; 2013 Dec; 280(24):6627-42. PubMed ID: 24299267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow kinetic studies of electron transfer in the reductase domain of neuronal nitric oxide synthase: re-evaluation of the kinetic mechanism reveals new enzyme intermediates and variation with cytochrome P450 reductase.
    Knight K; Scrutton NS
    Biochem J; 2002 Oct; 367(Pt 1):19-30. PubMed ID: 12079493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron transfer by diflavin reductases.
    Murataliev MB; Feyereisen R; Walker FA
    Biochim Biophys Acta; 2004 Apr; 1698(1):1-26. PubMed ID: 15063311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and function of an NADPH-cytochrome P450 oxidoreductase in an open conformation capable of reducing cytochrome P450.
    Hamdane D; Xia C; Im SC; Zhang H; Kim JJ; Waskell L
    J Biol Chem; 2009 Apr; 284(17):11374-84. PubMed ID: 19171935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant NADPH-cytochrome P450 oxidoreductases.
    Jensen K; Møller BL
    Phytochemistry; 2010 Feb; 71(2-3):132-41. PubMed ID: 19931102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain.
    Iyanagi T
    Biochem Biophys Res Commun; 2005 Dec; 338(1):520-8. PubMed ID: 16125667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interflavin electron transfer in human cytochrome P450 reductase is enhanced by coenzyme binding. Relaxation kinetic studies with coenzyme analogues.
    Gutierrez A; Munro AW; Grunau A; Wolf CR; Scrutton NS; Roberts GC
    Eur J Biochem; 2003 Jun; 270(12):2612-21. PubMed ID: 12787027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners.
    Yablokov EO; Sushko TA; Ershov PV; Florinskaya AV; Gnedenko OV; Shkel TV; Grabovec IP; Strushkevich NV; Kaluzhskiy LA; Usanov SA; Gilep AA; Ivanov AS
    Biochimie; 2019 Jul; 162():156-166. PubMed ID: 31034920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Location of functional centers in the microsomal cytochrome P450 system.
    Centeno F; Gutiérrez-Merino C
    Biochemistry; 1992 Sep; 31(36):8473-81. PubMed ID: 1390631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.
    Grunau A; Paine MJ; Ladbury JE; Gutierrez A
    Biochemistry; 2006 Feb; 45(5):1421-34. PubMed ID: 16445284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of a 5'-deazaFAD T491V NADPH-cytochrome P450 reductase.
    Zhang H; Gruenke L; Saribas AS; Im SC; Shen AL; Kasper CB; Waskell L
    Biochemistry; 2003 Jun; 42(22):6804-13. PubMed ID: 12779335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proximal FAD histidine residue influences interflavin electron transfer in cytochrome P450 reductase and methionine synthase reductase.
    Meints CE; Parke SM; Wolthers KR
    Arch Biochem Biophys; 2014 Apr; 547():18-26. PubMed ID: 24589657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.