These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 20624589)

  • 41. Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory.
    Mattfeld AT; Stark CE
    Hippocampus; 2015 Aug; 25(8):900-11. PubMed ID: 25560298
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples.
    Pennartz CM; Lee E; Verheul J; Lipa P; Barnes CA; McNaughton BL
    J Neurosci; 2004 Jul; 24(29):6446-56. PubMed ID: 15269254
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Network dynamics of hippocampal cell-assemblies resemble multiple spatial maps within single tasks.
    Jackson J; Redish AD
    Hippocampus; 2007; 17(12):1209-29. PubMed ID: 17764083
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contributions of ERK signaling in the striatum to instrumental learning and performance.
    Shiflett MW; Balleine BW
    Behav Brain Res; 2011 Mar; 218(1):240-7. PubMed ID: 21147168
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Anticipatory reward signals in ventral striatal neurons of behaving rats.
    Khamassi M; Mulder AB; Tabuchi E; Douchamps V; Wiener SI
    Eur J Neurosci; 2008 Nov; 28(9):1849-66. PubMed ID: 18973599
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Separate neural substrates for skill learning and performance in the ventral and dorsal striatum.
    Atallah HE; Lopez-Paniagua D; Rudy JW; O'Reilly RC
    Nat Neurosci; 2007 Jan; 10(1):126-31. PubMed ID: 17187065
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
    Parker NF; Cameron CM; Taliaferro JP; Lee J; Choi JY; Davidson TJ; Daw ND; Witten IB
    Nat Neurosci; 2016 Jun; 19(6):845-54. PubMed ID: 27110917
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Heterogeneous coding of temporally discounted values in the dorsal and ventral striatum during intertemporal choice.
    Cai X; Kim S; Lee D
    Neuron; 2011 Jan; 69(1):170-82. PubMed ID: 21220107
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.
    Lansink CS; Meijer GT; Lankelma JV; Vinck MA; Jackson JC; Pennartz CM
    J Neurosci; 2016 Oct; 36(41):10598-10610. PubMed ID: 27733611
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of striatum in updating values of chosen actions.
    Kim H; Sul JH; Huh N; Lee D; Jung MW
    J Neurosci; 2009 Nov; 29(47):14701-12. PubMed ID: 19940165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Action selection and action value in frontal-striatal circuits.
    Seo M; Lee E; Averbeck BB
    Neuron; 2012 Jun; 74(5):947-60. PubMed ID: 22681697
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Context-dependent reorganization of spatial and movement representations by simultaneously recorded hippocampal and striatal neurons during performance of allocentric and egocentric tasks.
    Yeshenko O; Guazzelli A; Mizumori SJ
    Behav Neurosci; 2004 Aug; 118(4):751-69. PubMed ID: 15301602
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neuronal basis for evaluating selected action in the primate striatum.
    Yamada H; Inokawa H; Matsumoto N; Ueda Y; Kimura M
    Eur J Neurosci; 2011 Aug; 34(3):489-506. PubMed ID: 21781189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible inactivation of the lateral dorsal thalamus disrupts hippocampal place representation and impairs spatial learning.
    Mizumori SJ; Miya DY; Ward KE
    Brain Res; 1994 Apr; 644(1):168-74. PubMed ID: 8032944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats.
    Lavoie AM; Mizumori SJ
    Brain Res; 1994 Feb; 638(1-2):157-68. PubMed ID: 8199856
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A general model of hippocampal and dorsal striatal learning and decision making.
    Geerts JP; Chersi F; Stachenfeld KL; Burgess N
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):31427-31437. PubMed ID: 33229541
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward.
    Humphries MD; Prescott TJ
    Prog Neurobiol; 2010 Apr; 90(4):385-417. PubMed ID: 19941931
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.
    Schönberg T; Daw ND; Joel D; O'Doherty JP
    J Neurosci; 2007 Nov; 27(47):12860-7. PubMed ID: 18032658
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.