These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 20624602)

  • 1. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.
    Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G
    Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling the perennial energy crop market: the role of spatial diffusion.
    Alexander P; Moran D; Rounsevell MD; Smith P
    J R Soc Interface; 2013 Nov; 10(88):20130656. PubMed ID: 24026474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK.
    Aylott MJ; Casella E; Tubby I; Street NR; Smith P; Taylor G
    New Phytol; 2008; 178(2):358-370. PubMed ID: 18331429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioenergy crop production and carbon sequestration potential under changing climate and land use: A case study in the upper River Taw catchment in southwest England.
    Dixit PN; Richter GM; Coleman K; Collins AL
    Sci Total Environ; 2023 Nov; 900():166390. PubMed ID: 37597557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.
    Ng TL; Eheart JW; Cai X; Miguez F
    Environ Sci Technol; 2010 Sep; 44(18):7138-44. PubMed ID: 20681575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.
    Blank PJ; Williams CL; Sample DW; Meehan TD; Turner MG
    Ecol Appl; 2016 Jan; 26(1):42-54. PubMed ID: 27039508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the domestication of lignocellulosic energy crops: learning from food crop domestication.
    Sang T
    J Integr Plant Biol; 2011 Feb; 53(2):96-104. PubMed ID: 21261812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crop plants versus energy plants--on the international food crisis.
    Schmitz PM; Kavallari A
    Bioorg Med Chem; 2009 Jun; 17(12):4020-1. PubMed ID: 19250830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prospects for arable farm uptake of Short Rotation Coppice willow and miscanthus in England.
    Glithero NJ; Wilson P; Ramsden SJ
    Appl Energy; 2013 Jul; 107(100):209-218. PubMed ID: 23825896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global yield dataset for major lignocellulosic bioenergy crops based on field measurements.
    Li W; Ciais P; Makowski D; Peng S
    Sci Data; 2018 Aug; 5():180169. PubMed ID: 30129935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus.
    da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M
    Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.
    Tonini D; Hamelin L; Wenzel H; Astrup T
    Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cell wall reference profile for Miscanthus bioenergy crops highlights compositional and structural variations associated with development and organ origin.
    da Costa RM; Pattathil S; Avci U; Lee SJ; Hazen SP; Winters A; Hahn MG; Bosch M
    New Phytol; 2017 Mar; 213(4):1710-1725. PubMed ID: 27859277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan.
    Nishiwaki A; Mizuguti A; Kuwabara S; Toma Y; Ishigaki G; Miyashita T; Yamada T; Matuura H; Yamaguchi S; Rayburn AL; Akashi R; Stewart JR
    Am J Bot; 2011 Jan; 98(1):154-9. PubMed ID: 21613094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herbaceous energy crop development: recent progress and future prospects.
    Heaton EA; Flavell RB; Mascia PN; Thomas SR; Dohleman FG; Long SP
    Curr Opin Biotechnol; 2008 Jun; 19(3):202-9. PubMed ID: 18513940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review.
    Nsanganwimana F; Pourrut B; Mench M; Douay F
    J Environ Manage; 2014 Oct; 143():123-34. PubMed ID: 24905642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioethanol production from dedicated energy crops and residues in Arkansas, USA.
    Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G
    Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.
    Gregoire KP; Becker JG
    Bioresour Technol; 2012 Sep; 119():208-15. PubMed ID: 22728202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Food vs biofuel.
    Stein K
    J Am Diet Assoc; 2007 Nov; 107(11):1870, 1872-6, 1878. PubMed ID: 17964304
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.