These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

825 related articles for article (PubMed ID: 20624731)

  • 41. A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes.
    Knight RD; Freeland SJ; Landweber LF
    Genome Biol; 2001; 2(4):RESEARCH0010. PubMed ID: 11305938
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Role of mutational bias and natural selection on genome-wide nucleotide bias in prokaryotic organisms.
    Banerjee T; Gupta SK; Ghosh TC
    Biosystems; 2005 Jul; 81(1):11-8. PubMed ID: 15917123
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation on the causes of codon and amino acid usages variation between thermophilic Aquifex aeolicus and mesophilic Bacillus subtilis.
    Basak S; Banerjee T; Gupta SK; Ghosh TC
    J Biomol Struct Dyn; 2004 Oct; 22(2):205-14. PubMed ID: 15317481
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis.
    Galtier N
    PLoS Genet; 2016 Jan; 12(1):e1005774. PubMed ID: 26752180
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteome adaptation to high temperatures in the ectothermic hydrothermal vent Pompeii worm.
    Jollivet D; Mary J; Gagnière N; Tanguy A; Fontanillas E; Boutet I; Hourdez S; Segurens B; Weissenbach J; Poch O; Lecompte O
    PLoS One; 2012; 7(2):e31150. PubMed ID: 22348046
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Constant relative rate of protein evolution and detection of functional diversification among bacterial, archaeal and eukaryotic proteins.
    Jordan IK; Kondrashov FA; Rogozin IB; Tatusov RL; Wolf YI; Koonin EV
    Genome Biol; 2001; 2(12):RESEARCH0053. PubMed ID: 11790256
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microbiology. Variety--the splice of life--in microbial communities.
    Banfield JF; Young M
    Science; 2009 Nov; 326(5957):1198-9. PubMed ID: 19965457
    [No Abstract]   [Full Text] [Related]  

  • 48. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions.
    van Wolferen M; Ajon M; Driessen AJ; Albers SV
    Extremophiles; 2013 Jul; 17(4):545-63. PubMed ID: 23712907
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation.
    Das S; Paul S; Bag SK; Dutta C
    BMC Genomics; 2006 Jul; 7():186. PubMed ID: 16869956
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein stability in extremophilic archaea.
    Scandurra R; Consalvi V; Chiaraluce R; Politi L; Engel PC
    Front Biosci; 2000 Sep; 5():D787-95. PubMed ID: 10966879
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation.
    Dutta A; Chaudhuri K
    FEMS Microbiol Lett; 2010 Apr; 305(2):100-8. PubMed ID: 20659165
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Thermophilic and mesophilic enzymes from B. caldotenax and B. stearothermophilus: properties, relationships and formation.
    Frank G; Haberstich HU; Schaer HP; Tratschin JD; Zuber H
    Experientia Suppl; 1976; 26():375-89. PubMed ID: 939279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein-length distributions for the three domains of life.
    Zhang J
    Trends Genet; 2000 Mar; 16(3):107-9. PubMed ID: 10689349
    [No Abstract]   [Full Text] [Related]  

  • 54. Adaptation of microorganisms and their transport systems to high temperatures.
    Tolner B; Poolman B; Konings WN
    Comp Biochem Physiol A Physiol; 1997 Nov; 118(3):423-8. PubMed ID: 9406426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversity and distribution of hemerythrin-like proteins in prokaryotes.
    French CE; Bell JM; Ward FB
    FEMS Microbiol Lett; 2008 Feb; 279(2):131-45. PubMed ID: 18081840
    [TBL] [Abstract][Full Text] [Related]  

  • 57. GC content-independent amino acid patterns in bacteria and archaea.
    Schmidt A; Rzanny M; Schmidt A; Hagen M; Schütze E; Kothe E
    J Basic Microbiol; 2012 Apr; 52(2):195-205. PubMed ID: 21780150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. How does gene expression level contribute to thermophilic adaptation of prokaryotes? An exploration based on predictors.
    Wang J; Ma BG; Zhang HY; Chen LL; Zhang SC
    Gene; 2008 Sep; 421(1-2):32-6. PubMed ID: 18621118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physics and evolution of thermophilic adaptation.
    Berezovsky IN; Shakhnovich EI
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12742-7. PubMed ID: 16120678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Looking at structure, stability, and evolution of proteins through the principal eigenvector of contact matrices and hydrophobicity profiles.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    Gene; 2005 Mar; 347(2):219-30. PubMed ID: 15777696
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.