These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

812 related articles for article (PubMed ID: 20624731)

  • 61. Stress genes and proteins in the archaea.
    Macario AJ; Lange M; Ahring BK; Conway de Macario E
    Microbiol Mol Biol Rev; 1999 Dec; 63(4):923-67, table of contents. PubMed ID: 10585970
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Looking at structure, stability, and evolution of proteins through the principal eigenvector of contact matrices and hydrophobicity profiles.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    Gene; 2005 Mar; 347(2):219-30. PubMed ID: 15777696
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A hot story from comparative genomics: reverse gyrase is the only hyperthermophile-specific protein.
    Forterre P
    Trends Genet; 2002 May; 18(5):236-7. PubMed ID: 12047940
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A universal trend of amino acid gain and loss in protein evolution.
    Jordan IK; Kondrashov FA; Adzhubei IA; Wolf YI; Koonin EV; Kondrashov AS; Sunyaev S
    Nature; 2005 Feb; 433(7026):633-8. PubMed ID: 15660107
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The impact of extremophiles on structural genomics (and vice versa).
    Jenney FE; Adams MW
    Extremophiles; 2008 Jan; 12(1):39-50. PubMed ID: 17563834
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Stabilization of secondary structure elements by specific combinations of hydrophilic and hydrophobic amino acid residues is more important for proteins encoded by GC-poor genes.
    Khrustalev VV; Barkovsky EV
    Biochimie; 2012 Dec; 94(12):2706-15. PubMed ID: 22930059
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers.
    Brochier-Armanet C; Forterre P
    Archaea; 2007 May; 2(2):83-93. PubMed ID: 17350929
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Molecular evolution before the origin of species.
    Davis BK
    Prog Biophys Mol Biol; 2002; 79(1-3):77-133. PubMed ID: 12225777
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sequence comparison and environmental adaptation of a bacterial endonuclease.
    Altermark B; Thorvaldsen S; Moe E; Smalås AO; Willassen NP
    Comput Biol Chem; 2007 Jun; 31(3):163-72. PubMed ID: 17500034
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparing Residue Clusters from Thermophilic and Mesophilic Enzymes Reveals Adaptive Mechanisms.
    Sammond DW; Kastelowitz N; Himmel ME; Yin H; Crowley MF; Bomble YJ
    PLoS One; 2016; 11(1):e0145848. PubMed ID: 26741367
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ion pairs and the thermotolerance of proteins from hyperthermophiles: a "traffic rule" for hot roads.
    Karshikoff A; Ladenstein R
    Trends Biochem Sci; 2001 Sep; 26(9):550-6. PubMed ID: 11551792
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes.
    Gupta RS
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1435-91. PubMed ID: 9841678
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes.
    Pasamontes A; Garcia-Vallve S
    BMC Bioinformatics; 2006 May; 7():257. PubMed ID: 16709240
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Comparative proteome analysis of psychrophilic versus mesophilic bacterial species: Insights into the molecular basis of cold adaptation of proteins.
    Metpally RP; Reddy BV
    BMC Genomics; 2009 Jan; 10():11. PubMed ID: 19133128
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures.
    Nakashima H; Fukuchi S; Nishikawa K
    J Biochem; 2003 Apr; 133(4):507-13. PubMed ID: 12761299
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Elucidation of factors responsible for enhanced thermal stability of proteins: a structural genomics based study.
    Chakravarty S; Varadarajan R
    Biochemistry; 2002 Jun; 41(25):8152-61. PubMed ID: 12069608
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis.
    Tekaia F; Yeramian E; Dujon B
    Gene; 2002 Sep; 297(1-2):51-60. PubMed ID: 12384285
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations.
    Barabote RD; Xie G; Leu DH; Normand P; Necsulea A; Daubin V; Médigue C; Adney WS; Xu XC; Lapidus A; Parales RE; Detter C; Pujic P; Bruce D; Lavire C; Challacombe JF; Brettin TS; Berry AM
    Genome Res; 2009 Jun; 19(6):1033-43. PubMed ID: 19270083
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular characterization of cold adaptation of membrane proteins in the Vibrionaceae core-genome.
    Kahlke T; Thorvaldsen S
    PLoS One; 2012; 7(12):e51761. PubMed ID: 23284762
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Archaeabacterial seryl-tRNA synthetases: adaptation to extreme environments and evolutionary analysis.
    Taupin CM; Leberman R
    J Mol Evol; 1999 Apr; 48(4):408-20. PubMed ID: 10079279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.