BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 20624981)

  • 1. Control of transpiration by radiation.
    Pieruschka R; Huber G; Berry JA
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13372-7. PubMed ID: 20624981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water relations in tree physiology: where to from here?
    Landsberg J; Waring R; Ryan M
    Tree Physiol; 2017 Jan; 37(1):18-32. PubMed ID: 28173481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing a vapour-phase model of stomatal responses to humidity.
    Mott KA; Peak D
    Plant Cell Environ; 2013 May; 36(5):936-44. PubMed ID: 23072325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The competition between liquid and vapor transport in transpiring leaves.
    Rockwell FE; Holbrook NM; Stroock AD
    Plant Physiol; 2014 Apr; 164(4):1741-58. PubMed ID: 24572172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge type affects leaf-level water relations and estimated transpiration of Eucalyptus arenacea.
    Wright TE; Tausz M; Kasel S; Volkova L; Merchant A; Bennett LT
    Tree Physiol; 2012 Mar; 32(3):280-93. PubMed ID: 22367763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations.
    Wohlfahrt G; Brilli F; Hörtnagl L; Xu X; Bingemer H; Hansel A; Loreto F
    Plant Cell Environ; 2012 Apr; 35(4):657-67. PubMed ID: 22017586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?
    Bunce JA
    Plant Cell Environ; 2006 Aug; 29(8):1644-50. PubMed ID: 16898024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.).
    Kim SH; Lieth JH
    Ann Bot; 2003 Jun; 91(7):771-81. PubMed ID: 12730065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration.
    Frak E; Le Roux X; Millard P; Adam B; Dreyer E; Escuit C; Sinoquet H; Vandame M; Varlet-Grancher C
    J Exp Bot; 2002 Nov; 53(378):2207-16. PubMed ID: 12379788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sheathing the blade: Significant contribution of sheaths to daytime and nighttime gas exchange in a grass crop.
    Sadok W; Lopez JR; Zhang Y; Tamang BG; Muehlbauer GJ
    Plant Cell Environ; 2020 Aug; 43(8):1844-1861. PubMed ID: 32459028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating nectarine tree transpiration and dynamic water storage from responses of leaf conductance to light and sap flow to stem water potential and vapor pressure deficit.
    Paudel I; Naor A; Gal Y; Cohen S
    Tree Physiol; 2015 Apr; 35(4):425-38. PubMed ID: 25618897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative perspective on the control of transpiration by radiation.
    Mott KA; Peak D
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19820-3. PubMed ID: 22106306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stomatal numbers, leaf and canopy conductance, and the control of transpiration.
    Miglietta F; Peressotti A; Viola R; Körner C; Amthor JS
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):E275; author reply E276. PubMed ID: 21700887
    [No Abstract]   [Full Text] [Related]  

  • 14. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.
    Delaney KJ
    Plant Sci; 2012 Apr; 185-186():218-26. PubMed ID: 22325884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.
    Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M
    Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural adjustments in resprouting trees drive differences in post-fire transpiration.
    Nolan RH; Mitchell PJ; Bradstock RA; Lane PN
    Tree Physiol; 2014 Feb; 34(2):123-36. PubMed ID: 24536069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L.
    Wang Y; Noguchi K; Terashima I
    Plant Cell Environ; 2008 Sep; 31(9):1307-16. PubMed ID: 18537998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake.
    Whitehead D; Walcroft AS; Scott NA; Townsend JA; Trotter CM; Rogers GN
    Tree Physiol; 2004 Jul; 24(7):795-804. PubMed ID: 15123451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.
    Hoshika Y; Katata G; Deushi M; Watanabe M; Koike T; Paoletti E
    Sci Rep; 2015 May; 5():9871. PubMed ID: 25943276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.