These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 20624984)

  • 1. Aging and nonergodicity beyond the Khinchin theorem.
    Burov S; Metzler R; Barkai E
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13228-33. PubMed ID: 20624984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalization of the Khinchin theorem to Lévy flights.
    Weron A; Magdziarz M
    Phys Rev Lett; 2010 Dec; 105(26):260603. PubMed ID: 21231638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wiener-Khinchin Theorem for Nonstationary Scale-Invariant Processes.
    Dechant A; Lutz E
    Phys Rev Lett; 2015 Aug; 115(8):080603. PubMed ID: 26340173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aging correlation functions of the interrupted fractional Fokker-Planck propagator.
    Witkoskie JB; Cao J
    J Chem Phys; 2006 Dec; 125(24):244511. PubMed ID: 17199359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging Wiener-Khinchin Theorem.
    Leibovich N; Barkai E
    Phys Rev Lett; 2015 Aug; 115(8):080602. PubMed ID: 26340172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why irreversibility is not a sufficient condition for ergodicity.
    Lee MH
    Phys Rev Lett; 2007 May; 98(19):190601. PubMed ID: 17677614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantifying non-ergodic dynamics of force-free granular gases.
    Bodrova A; Chechkin AV; Cherstvy AG; Metzler R
    Phys Chem Chem Phys; 2015 Sep; 17(34):21791-8. PubMed ID: 26252559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional statistical mechanics.
    Tarasov VE
    Chaos; 2006 Sep; 16(3):033108. PubMed ID: 17014213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport.
    Börgers C; Larsen EW
    Med Phys; 1996 Oct; 23(10):1749-59. PubMed ID: 8946371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Khinchin theorem and anomalous diffusion.
    Lapas LC; Morgado R; Vainstein MH; Rubí JM; Oliveira FA
    Phys Rev Lett; 2008 Dec; 101(23):230602. PubMed ID: 19113535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aging Wiener-Khinchin theorem and critical exponents of 1/f^{β} noise.
    Leibovich N; Dechant A; Lutz E; Barkai E
    Phys Rev E; 2016 Nov; 94(5-1):052130. PubMed ID: 27967149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations.
    Czégel D; Balogh SG; Pollner P; Palla G
    Sci Rep; 2018 Jan; 8(1):1883. PubMed ID: 29382874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous diffusion and nonergodicity for heterogeneous diffusion processes with fractional Gaussian noise.
    Wang W; Cherstvy AG; Liu X; Metzler R
    Phys Rev E; 2020 Jul; 102(1-1):012146. PubMed ID: 32794926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking.
    Burov S; Jeon JH; Metzler R; Barkai E
    Phys Chem Chem Phys; 2011 Feb; 13(5):1800-12. PubMed ID: 21203639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging underdamped scaled Brownian motion: Ensemble- and time-averaged particle displacements, nonergodicity, and the failure of the overdamping approximation.
    Safdari H; Cherstvy AG; Chechkin AV; Bodrova A; Metzler R
    Phys Rev E; 2017 Jan; 95(1-1):012120. PubMed ID: 28208482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subdiffusion of mixed origins: when ergodicity and nonergodicity coexist.
    Meroz Y; Sokolov IM; Klafter J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):010101. PubMed ID: 20365308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and fractional Fokker-Planck equations.
    Sokolov IM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 2):056111. PubMed ID: 11414965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractional Poisson-Nernst-Planck Model for Ion Channels I: Basic Formulations and Algorithms.
    Chen D
    Bull Math Biol; 2017 Nov; 79(11):2696-2726. PubMed ID: 28940114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient aging in fractional Brownian and Langevin-equation motion.
    Kursawe J; Schulz J; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.